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Abstract 

Progress in the field of computer networks has produced many areas of researches which paved the 

way for studying many new applications. One of the most popular applications that has shifted from 

the research level to the application level is wireless sensor networks (WSNs), based on which other 

advanced fields such as the Internet of Things are built. 

These wireless sensor networks have been applied in many applications, and has proven to be an 

effective tool in collecting information in different environments, but with the expansion of the 

range of places that humans are interested in and trying to explore, the need has become urgent to 

apply wireless sensor networks to environments that are difficult to deal with by humans. This 

imposes new obstacles on the implementation and the performance of wireless sensor networks 

such as space, or applications that impose immersion of sensors in water, or industrial environments 

with high noise or medical environments, and perhaps toxic environments or those characterized 

by very high or very low temperatures. All these mentioned before prompted us to open new 

horizons of researches for wireless sensor networks to collect data from those environments. 

Many studies have appeared to deal with these types of environments, and we will add to them the 

use of edge computing to deal with data at the place of gathering, especially in the space 

environment and aerial photography, where the data will be processed at the end of data collection 

and transmission since the transmission consumes the major part of energy, we will decrease by 

processing the date at the edge of the network. Classified information is sent only to the ground 

station to reduce bandwidth usage and perform real-time calculations. 
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Аннотация 

Прогресс в области компьютерных сетей породил множество областей исследований, 

которые проложили путь для изучения множества новых приложений. Одним из самых 

популярных приложений, перешедших с исследовательского уровня на уровень 

приложений, являются беспроводные сенсорные сети (WSN), на основе которых строятся 

другие передовые области, такие как Интернет вещей. 

Эти беспроводные сенсорные сети применялись во многих приложениях и зарекомендовали 

себя как эффективный инструмент для сбора информации в различных средах. С 

расширением круга мест, которые интересуют людей и исследуются, возникла острая 

необходимость в применении беспроводных сенсорных сетей в средах, с которыми людям 

трудно иметь дело. Это вызывает новые препятствия для реализации и работы беспроводных 
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сенсорных сетей, таких сферах как космос, или приложения, требующие погружения 

датчиков в воду, промышленные среды с высоким уровнем шума или медицинские среды, а 

также, возможно, токсичные среды или среды, характеризующиеся очень высоким или 

очень низким уровнем шума, температуры. Все это, упомянутое ранее, побудило нас 

открыть новые горизонты исследований беспроводных сенсорных сетей для сбора данных 

из этих сред. 

Появилось много исследований, посвященных этим типам сред, и мы добавим к ним 

использование граничных вычислений для обработки данных в месте их сбора, особенно в 

космической среде и аэрофотосъемке, где данные будут обрабатываться в конце сбора и 

передачи данных, так как передача потребляет большую часть энергии, основную часть 

энергии мы уменьшим объем за счет обработки данных на границе сети. Закрытая 

информация отправляется только на наземную станцию, чтобы уменьшить использование 

полосы пропускания и выполнять вычисления в реальном времени. 

Ключевые слова: гиперспектральные изображения; классификация; пограничная 

коммутация; беспроводная сенсорная сеть; экстремальные условия 

Для цитирования: Агха Х.Р., Абдул-Джаббар Дж. Классификаторы гиперспектральных 

изображений в беспроводных сенсорных сетях в экстремальных условиях // Научный 

результат. Информационные технологии. – Т.8, №1, 2023 – С. 23-37. DOI: 10.18413/2518-

1092-2022-8-1-0-2 

 

1 INTRODUCTION 

Wireless sensor Network (WSN) is a group of sensors that are used to transmit or follow a specific 

physical or chemical phenomenon (such as temperature, humidity, vibration, light... etc.) and then transfer 

information about the phenomenon wirelessly to the data processing center to benefit from it without the 

need for a human presence in the place of the physical phenomenon. 

Wireless sensor Network, as one of the best emerging technologies of the 21st century, has started to 

develop at an accelerated pace in the past ten years. A lot of researches worked to improve it in various 

aspects, including its architecture, node operating systems, routing protocols, data collection and 

integration, positioning mechanism, time synchronization, and so on [1]. Moreover, large numbers of 

promising applications have emerged and been deployed in different geographical areas such as 

infrastructure protection, scientific exploration, military monitoring, traffic monitoring and control, mining 

and maritime security, environmental protection, object tracking, military affairs, etc. With the 

conveniences provided by the WSN, our lives have been greatly influenced and changed in many ways. 

However, there are still many problems affecting implementation of WSN. These include unreliability of 

wireless communication systems, limited available power, failure of nodes, etc. [2]. 

The world has seen a number of significant changes as a result of the last 40 years of economic and 

political upheaval. As new innovations took control, several technical trends came to an abrupt stop, 

stunning the experts. Smart sensing is one of the successful ones, blooming as a result of hopes for a better 

quality of life. Even though there have been several successful civic and industrial applications and projects 

all over the world, a true paradigm shift has yet to materialize [3]. Too many research papers have somehow 

failed to show the impressive industrial applications necessary to justify the resources being used as 

research activity has risen and resources have increased. So, we must evaluate the performance of sensors 

during the past 20 years on a worldwide scale and study the financial viability of the initiatives mentioned.  

A new technology must satisfy four fundamental criteria in order to be successfully implemented: 

confidence, objectivity, security, and sustainability. Objectivity in this context refers to the requirement for 

a good service, which in our case means overcoming unusual working conditions so that system can enable 

new services, whether in the vacuum of space, the oceans, below ground, or in locations with extremely 

high, extremely low, and highly variable temperature, humidity, winds, and pressure [4]. 

The necessity for technological gadgets that can be linked to the wider world, gather data from it, and 

transfer it for analysis and processing has risen as a result of today's greater dependence on technology. 

This is also a result of the bandwidth's limitations. We found that many aspects have been covered by 

researchers, but some of the aspects still require further work, such as using artificial intelligence on the 
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edge (smart edge) and security challenges.  Many advantages, like overcoming bandwidth restrictions, 

scalability, real-time response, and mobility, deployment of a WSN. 

 Due to the slower development of communication technology compared to the growth of processing 

technology, there is interest in having processing occur at a node rather than a central server or in the cloud. 

As a result, the cost of the bandwidth package is still high compared to the cost of data processing at the 

network's edge. Long-lasting battery development has opened up new possibilities for utilizing WSNs more 

effectively and in a wider range of applications. With the need to save local storage and computation 

expenses growing, cloud computing is gaining popularity. However, cloud computing cannot be used easily 

due to the significant energy consumption and challenging internet connectivity for many resource-

constrained machines. The aforementioned problems may be resolved through edge computing. When edge 

computing compared to cloud computing, it offers consumers a variety of services in a place that is closer 

to them, including easier access to processing power, storage, and communication bandwidth. Its benefits 

include a quicker reaction time, less demand on the main network's bandwidth, and better data security and 

privacy protection.  

The benefit of edge computing is evident in sensor types that acquire a large amount of data, such as 

cameras, and especially in hyperspectral cameras that acquire a larger amount of data that is very difficult 

to send in their raw form to the data center. Hyperspectral imaging is a novel analytical method built on 

spectroscopy. For the same geographical region, it gathers hundreds of pictures at various wavelengths, 

while the human eye only has three color receptors—blue, green, and red—hyperspectral imaging analyzes 

the continuous spectrum of light for each pixel of the image with precise wavelength precision, both in the 

visible and near-infrared ranges. A so-called hyperspectral cube is created from the gathered data, and it 

has three dimensions: two of which indicate the scene's geographic extent and the third its spectral content. 

In the late 1980s, Goetz et al. [5] developed hyperspectral imaging, which is today a potent remote 

sensing technique that gives access to more precise data on the Earth's surface and atmosphere among many 

applications. This technology, which entails the acquisition of numerous images in a number of closely 

spaced narrow spectral bands and the reconstruction of the reflectance spectrum for each pixel of the image 

[6], has the capacity to provide both spatial and spectral information that is crucial in the study of Earth's 

surface as well as of the properties of the atmosphere at various levels of scientific investigation. 

A new age of precise, data-driven research into the Earth and the outer atmosphere has begun as a 

result of the development of hyperspectral imaging systems technology and data processing approaches 

during the past several decades.  Land cover classification (vegetation studies: vegetation biophysical and 

biochemical properties characterization, species identification, plant stress assessment, leaf water content 

determination, development of spectral vegetation indices [7]; soil studies: soil mapping and classification, 

assessment of soil degradation [8], mapping of soil contamination [9]. 

Management of water resources, including monitoring of water quality parameters (chlorophyll-a, 

turbidity, and total suspended particles) and bathymetric measurements (evaluation of water depth and 

bottom type and mapping of shallow water benthic habitat) [7]. Observations of atmospheric composition 

(greenhouse gas studies: detection, identification, quantification, and visualization of sulfur dioxide (SO2), 

methane (CH4), ammonia (NH3), nitrogen dioxide (NO2), and carbon dioxide (CO2) in the atmosphere. 

Aerosol and cloud studies: aerosol optical thickness and water content retrieval; cloud detection; cloud 

thermodynamic phase estimation; cloud microphysical parameters (optical thickness and effective radius).  

We need to use a network for classifying hyperspectral images, characterized by speed and accuracy 

in classifying data, and its parameters are clear and easy to control. The scattering transform is a deep 

representation [10], defined as a cascade of wavelet transforms followed by the application of a complex 

modulus. On a more theoretical level, the scattering transform has the interest of modelling in a simple, yet 

realistic manner, the deep learned convolutional representations that have allowed, in the past five years, 

impressive progresses on a wide range of machine learning tasks, or at least the first layers of these 

representations. Indeed, it has the architecture of a deep convolutional representation. On various tasks, it 

performs essentially as well as learned convolutional representations [11, 12]. On other tasks, it can replace 

the first layers of a deep representation while retaining or improving the classification accuracy [13]. But 

compared to learned representations, the scattering transform has an entirely explicit expression. It is thus 
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more amenable to mathematical analysis, and offers some insight into the behavior of deep learned 

representations, notably in terms of their invariance properties. 

 

2 LITERATURE REVIEW 

 

2.1 EDGE COMPUTING ENABLED WSN 

Some requirements must be met in order to design a reliable Edge computing enabled WSN, including 

system security, real-time application support, efficient resource management, energy consumption, system 

cost, heterogeneous handling of hardware, ability to support mobility, system scalability, system support 

for artificial intelligence, system availability, and ability to avoid malfunctions. Researches are studied and 

classified into 10 classes, with one researcher in each class. 
 

2.1.1 SYSTEM SECURITY 

Any trustworthy system has to be protected. In the case of edge computing enabled WSN, the lake of 

sufficient resources, processing speed, or memory, and the fact that data is distributed makes it vulnerable 

to hackers. In the case of cloud computing enabled, the cloud has sufficient capabilities to run the most 

sophisticated security algorithm. The secure system requirements of availability, dependability, secrecy, 

and data integrity must be satisfied. 

 

2.1.2 REAL-TIME APPLICATION SUPPORT 

When it comes to real-time applications, reaction time is crucial for soft real-time systems and deadly 

for hard real-time ones. Using a cloud-enabled WSN would significantly decrease system performance by 

introducing latency and congestion issues [14]. Due to the neglection of the transit time from the data source 

to the processing of the data for the decision, edge computing's dispersed nature made it suited for real-

time applications [15, 16].  

The application trial approach is used to offer an edge computing platform that supports transit 

network systems by physically deploying mobile edge nodes devices aboard a transit bus [17]. Current 

issues with power transmission efficiency and reliability need the optimization of the framework and the 

proposal of an effective heuristic method based on the simulated annealing technique. In the simulation of 

the proposed system, many edge computing servers were employed to determine efficiency [18]. 

Applications for virtual reality (VR) and augmented reality (AR) need to be researched. Analyzing the 

interplay of head mounted displays with AR/VR networks requires discussion of the networking challenges 

faced by the AR/VR community in a practical situation [19] to satisfy the demands of 5G apps that need a 

lot of resources and suffer from delays. The use of a price system for photos while taking into account their 

freshness, resolution, and data size is proposed in an edge computing-based photo crowdsourcing (EC-

PCS) framework [20]. An algorithm is proposed to locate the position of a robot precisely Extended Kalman 

Filter (EKF) and realize it using Edge computing instead of cloud computing to achieve real-time position 

control and to reduce bandwidth usage [21].  

 

2.1.3 EFFICIENT RESOURCE MANAGEMENT 

Due to the processor and memory limitations of high-end devices, resources in edge computing are 

substantially more constrained than those used in cloud computing. These devices can also vary in terms 

of their structural make-up and the tasks that are assigned to them. Since there are only so many resources 

available, it is crucial that they are used in an efficient manner to get the most out of them [22]. To address 

the issues with Edge computing implementation in WSN, few research were conducted in order to optimize 

the pseudorandom resource allocation, optimizing the placement of edge nodes in the physical environment 

utilizing a multitiered mobile edge computing system is investigated. Hardware resource allocation is 

accomplished using the Bayesian optimizer energy consumption. 
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2.1.4 SYSTEM COST 

The cost of using the data transmission network may be high; thus, to improve the system, more 

resources must be added. Since costs may be constant or variable, a trade-off between the new costs and 

improvements must be made to determine whether the addition is essential [23, 24]. Due to initial hardware 

expenses, edge computing for stationary systems can, in the long term, lower the cost of data transmission 

and processing. The cost may be higher in systems with mobile peripherals since it becomes one of the 

difficulties in doing a feasibility study in these systems [24, 25]. 

 

2.1.5 HETEROGENEOUS HANDLING OF HARDWARE 

Due to the diverse nature of WSN resources, including the kind of data representation, storage and 

processing capacities, and peripheral devices like wearables and sensors that are part of the Internet of 

Things. When building Edge computing, this variety must be taken into consideration since Edge nodes 

may find it difficult to manage this diversity WSN [26].  

 

2.1.6 ABILITY TO SUPPORT MOBILITY 

One of the difficulties is delivering computing capacity utilizing mobile nodes [23]. But mobile edge 

computing may be used to do this (MEC). MEC can be used for a wide range of applications, including the 

temporary storing of certain data as well as the potential for processing that data. Mobile edge computing 

technology may be used in 4G mobile network systems, and 5G and 6G systems are anticipated to 

significantly support it [27]. It is now possible to migrate containers between hosts with various ISAs thanks 

to the integration of H-Container into Docker, which migrates natively generated containerized apps 

between compute nodes with CPUs of different ISAs. Integrate H-Container into Docker to enable 

container migration between hosts with various Instruction Set Architectures (ISAs), since Server programs 

originally developed for one ISA cannot do so when a client changes its physical location [28]. 
 

2.1.7 SYSTEM SCALABILITY 

The scalability of the network is one of the key advantages of employing computers [29]. Edge 

computing enabled WSN is the ideal option owing to the ability to add many edge computing nodes as 

needed and at any location, which is made possible by the rapid development of applications employing 

WSN [30]. 

In order to provide location-based services in the context of smart cities, a Design and experimental 

assessment of a scalable two-tier Edge Computing architecture is built. The object-recognition service is 

powered by the Google-powered TensorFlow framework [31].  
 

2.1.8 SYSTEM SUPPORT FOR ARTIFICIAL INTELLIGENCE 

It is now a reality that any WSN should contain some type of intelligence algorithms to process and 

analyze the data gathered as the primary job of WSNs is to collect data. This data should then be processed 

and evaluated, which is mostly done using artificial intelligence (AI). The most complex algorithms can be 

handled by processing power in a cloud scenario, but there will be a significant delay owing to network and 

congestion latency. A smart edge may be defined as an edge node that can manage AI algorithms with edge 

resources that have the capacity to satisfy artificial intelligence service requests for edge devices connected 

to it [32, 33].  

 

2.1.9 SYSTEM AVAILABILITY 

Edge computing, in contrast to cloud computing, is less dependable since errors might arise; thus, 

alternate working plans must be prepared in the event of a mistake to prevent system collapse [34].  

A solution is developed in Python 3 and tested on a set of edge devices to address the problem of 

reliable edge computing on dynamic, high-churn edge systems. A deviceless pipeline-based approach 

(DPA) is then developed to establish workflows in which stages of the analysis pipeline are finished on 

edge devices [34]. A Krill-based method is created to handle the dependable workflow scheduling problem 
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across mobile edge computing environments by framing the problem as an optimization problem that takes 

the dependability of resources into account [35]. 
In the figure below the percentage density of research efforts in each of the edge computing 

requirement. 

 

 
Fig. 1. Percentage of research efforts for each of the requirements 

Рис. 1. Процент исследовательских усилий по каждому из требований 

 

2.2 EXTREME ENVIRONMENTS 

One of the key findings is that too many researchers focus more on publishing potential than on 

making their work helpful and applicable to real-world problems that might enhance quality of life. We 

observe many patterns of common networking manipulation, such as routing, scheduling, node 

replacement, mobility, and coverage under oversimplified working conditions, where simple computer 

simulations can produce enormous volumes of inaccurate data, in addition to the few useful research 

activities, such as energy conservation, optimized performance, cross layering, efficient sampling, and data 

management; They are only producing a giant black hole that will devour computer resources.  We have 

decided that we need to focus research on the environments that need sensors the most  “space and other 

harsh”.  

All complicated sensing and actuating systems can benefit from the design characteristics offered by 

Wireless Sensor System (WSS) platforms for homogeneous Sensor wireless systems. Although generally 

helpful, this function might to operate under Space and Extreme Environments (SSE) restrictions, the 

system must be made robust. Given that some SEE applications require further leveraging of the WSS to 

function in harsh environments, we must implement a few crucially important refinements under the WSS-

SEE flagship by adopting the extra stringent requirements of an unconventional environment in the design 

process for a "unconventional wireless sensing" (UWS) solution. 

In other words, a further revitalizing that findings move us in a better position to reactivate more 

fruitful research and development as needed, which is crucial to injecting flagship breakthrough 

applications where both academics and industries can visualize the true potentials of wireless sensor 

platforms that can only happen under new unconventional application. We need to redefine SEE, or more 

properly EE in its condensed version, in order to find a good spot to support the Convolutional Sensos 

System approach for a new application paradigm.  We further investigate the term "environment" in order 

to do this. One is for living circumstances; "human living environments" are often divided into three 
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categories: acidic, alkaline, and astrobiology. Because of its unexpected properties, space is considered an 

EE. 

For wireless sensor technologies used in flight, we may now add the possibility of out-of-scale 

distances between systems with severe propagation issues, LOS, low air pressure, and fluctuating gravity, 

all of which must function in an energy-scarce environment. Even though every system is tested in a lab 

setting and in a terrestrial environment, the mission environment's extremely low pressure, variable gravity, 

and lack of atmosphere may cause some systems to operate differently. NASA, for instance, employs 

Skylab in space and undersea facilities (NEEMO) for testing space parts, components, and systems before 

their deployment because of the high expense of any potential failure. Final assembly and other tasks. The 

potential for upgrading man-made satellites with improved wireless sensor utilization is significant. Now 

that there are thousands of them, many of which are underutilized, they might considerably enhance human 

existence on Earth if properly utilized and fitted with sensors. Really, most airplanes require improved 

wireless sensing. 

The biggest obstacle to the functioning of wireless sensor systems for SEE is batteries. Implementing 

several modes of operation, such as off, sleep, or standby power states, decreasing the operating voltage, 

precise hardware control, and power-efficient utilization of the wireless spectrum may all help save on 

board battery power [36]. Scaled-down modulation techniques can also be utilized to reduce power 

consumption [37]. The restricted battery on board can also be solved by eliminating overhead in sensor data 

packets based on the characteristics of the sensor data [38]. 

The battery power conservation is the least of our worries in severe locations where it is debatable 

whether a battery is even necessary given the hostile environment. Due to this, adopting passive or battery-

free wireless sensors in certain settings might be quite appealing. Another factor that makes passive sensors 

a desirable option for space applications is the weight and cost reductions. Monitoring the temperature at 

various locations on the space telescope's mirrors is one example of how battery-free sensors are used in 

space applications (Figure 2). 

 

 
Fig. 2. Space telescope (Picture courtesy of NASA GSFC) 

Рис. 2. Космический телескоп (Изображение предоставлено НАСА GSFC) 

 

We need a collection of tiny mirrors to keep the picture focused and maintain the structural integrity 

necessary for fine-resolution imaging. The mirrors enlarge and contract due to the hostile space 

environment's high temperature dynamic range. Temperature adjustment can be achieved by remotely 

activating and deactivating localized heaters using battery-free wireless sensors. As the number of sensors 

increases, the issue of spectrum sharing arises. 

Another illustration is the incorporation of sensors, such as inflatable decelerators, inside the heat 

shield of re-entry vehicles (Figure 3). 
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Fig. 3. Inflatable decelerator (Picture courtesy of NASA GSFC) 

Рис. 3. Космический телескоп (Изображение предоставлено НАСА GSFC) 

 

The wireless sensors must be able to withstand extremely high temperatures at the re-entry in order 

to function properly. 

By delivering cooling liquid to those precise spots, any unusually high local temperatures outside of 

the regular window may be found and disastrous events can be prevented. 

Numerous technological platforms, including semiconductor-based sensors, piezoelectric substrates, 

and inductive sensors, can be used to implement passive wireless sensors. One of the extensively utilized 

technologies that relies on the concentration of the traveling wave on the surface of the piezoelectric-based 

sensors are surface acoustic wave (SAW) based sensors [39]. One sensor operation at a time was the norm 

for SAW device implementations in the past. 

Recently, a coded SAW sensor system was put out in [40], which used coded sensors to offer a 

multiple-access capability. 

 

2.3 HYPER SPECTRAL IMAGING  

Hyperspectral images and remote sensing have been taken into consideration in recent advances in 

imaging science and technology. The learning of the machines is often the foundation of the contemporary 

intelligent technologies, including support vector machines, sparse representations, active learning, extreme 

learning machines, transfer learning, and deep learning. With their accuracy and integrity, these approaches 

improve the processing of such three-dimensional, multiple band, and high-resolution pictures. 

One of the most important scientific and technical developments in remote sensing imaging is 

hyperspectral imaging. The technique known as hyperspectral imaging (HSI) perfectly exemplifies how 

remote sensing and geographic information systems (GIS) may work together. Additionally, HSI benefits 

include ecological protection, security, applications in agriculture and horticulture, crop specification and 

monitoring, and medical diagnosis, identification, and quantification. [3] 

RGB images  are Three dimensions structure: width, height, and three-color bands or channels made 

up of red, green, and blue color information. A mixture of RGB intensities laid out on a color plane, they 

are recorded in a 3D byte array that expressly stores a color value for each pixel in the image. Contrarily, 

HSI is made up of thousands of hypercubes and has a huge quantity of embedded information, including 

spectral, spatial, and temporal data, as well as a high resolution. This data enables numerous applications 

to identify and classify land coverings, which are extensively investigated [41]. 
Digital RGB cameras can only identify things by their color and shape, hence they are only able to 

take RGB photos. Additionally, only three visible bands are present in the human sight range, which results 
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in insufficient embedded information. Contrarily, specialized spectrometers mounted on artificial satellites, 

or airborne hyperspectral sensors, are used to record the HSI. Due to their extensive collection of bands 

that are not limited to the visible light spectrum and their larger spectral band-pass, they have a wide variety 

of scenarios. However, a hyperspectral sensor's channel width is significantly narrower than a digital sensor, 

which only absorbs light in three large channels. This results in a much greater spectral resolution and data 

volume, which makes it more difficult to store, mine, and manage the data [42]. 
Additionally, processing these data with such a large number of bands comes with a number of 

challenges, such as noisy labels, geometric distortion, limited or unbalanced labeled training samples, the 

Hughes phenomenon, and dimensionality reduction-related artifacts, such as overfitting, redundancy, 

spectral variability, and the loss of important features between the channels [43–46]. 

The classification of HSIs is thought to be an inherently nonlinear problem, and the initial strategy 

by linear-transformation-based statistical techniques such as principal component analytical methods, such 

as principal component analysis (PCA) [47] and independent component analysis (ICA) [48], the 

discriminant analytical methods, such as linear and fisher, wavelet transforms, composite, probabilistic, 

generalized, kernel methods [48–55], However, they were only interested in spatial information. They 

underlined that the feature extractor approaches, which are complicated in terms of cost, space, and time 

and supported by certain simple random classifiers, are insufficiently accurate. Following the success of 

these conventional systematic procedures used for HSI categorization, researchers developed a strong 

interest in using the most recent developing but not laborious computer-based technologies, which 

improved the process overall and brought it closer to perfection. The development of machine learning, 

according to recent research, makes the last decade the one in which computer-based technologies have 

advanced the most (ML). ML is an algorithmic, potent instrument with cognition similar to that of the 

human brain. By holding abstraction, it only portrays a complicated system. In order to extract the latent 

discriminative characteristics, both spectral and spatial, it may therefore simplify the problem and look 

deeper into the insights of the enormous amount of HS data [54]. In order to obtain the needed accuracy in 

classifying the objects of the target HSI data, it thus overcomes all obstacles. As a result, they function as 

all-inclusive strategies that can accomplish the goal on their own. In light of this, we carried out a thorough 

assessment based on the numerous HSI discriminative machine learning (ML, DL) models. AVIRIS Indian 

Pines (IP), Kennedy Space Center (KSC), Salinas Valley (SV), and ROSIS-03 University of Pavia (UP) 

are the HSI datasets that are frequently used for landcover classification in most literature studies. Less 

frequently used datasets include Pavia Center, Botswana, University of Houston (HU), etc. They have 

already been improved and are now freely downloadable and operational on. 

Our work's inspiration may be broken down into three categories. First, a brand-new approach is 

suggested for the review job that is completely methodical and aids in generating ideas for embedded 

questions and research gaps after reading a significant number of research publications. Second, this paper 

focuses on the most recent developments in ML technologies for categorizing HSI. They are briefly and 

methodically described, and a thorough assessment of the relevant literature is provided. Finally, 

conclusions are reached that provide researchers more information for next studies. Our innovative effort's 

main contributions to the field of hyperspectral images study are as follows: 

− the full reworking of the ML/DL-based analytical and classification work done on HS imagery to 

date. 

− emphasis on the categorization approaches that have been studied and used often thus far. It also 

provides a quick explanation of the newest technological advancements and the emphasized hybrid 

approaches. 

An open knowledge base that evaluates all research on each indicated strategy in terms of their 

methodology, convenience and restrictions, and future strategies works as a reservoir of pertinent 

information that is listed forth. This example may aid in selecting an appropriate research goal for more 

HSIs-related study  explicit notion of the growth in interest in the relevant field that would entice researchers 

to dedicate themselves to providing a coherent, substantial specification (benefit and drawbacks) of each 

method that informs the researchers academically about their preferred outcome and the challenges for a 

particular technique. 
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The present technologies that have been adopted are hot spots, according to a temporary depiction of 

the most recent study on HSIs. Additionally, concentrate on the areas of study that are of interest and may 

be applicable to others, i.e., the hybridized approaches that are commonly used by researchers to solve 

problems and produce the necessary experimental outcomes.  

A number of challenges have made it difficult to analyze and manipulate hyperspectral pictures. It 

first struggled with spectroscopic technology since the hyperspectral sensors were of low quality and there 

wasn't enough data. However, as applied science has developed, things have become more straightforward, 

but there are still certain well-known nondispersible obstacles to be overcome. The following are some of 

them: 

Lack of high-resolution, noise-free Earth observation (EO) images: When spectrometers were first 

discovered, they were not particularly effective. Because of this, the signals arriving from the Earth's surface 

for Earth observations are altered by sounds brought on by water vapor, air pollution, and other atmospheric 

disturbances. The creation of high-quality hyperspectral data for Earth observation and the development of 

a variety of high-performance spectrometers that combine the strengths of digital imaging, spectroscopy, 

and the extraction of numerous embedded spatial-spectral features have both been the focus of numerous 

efforts over the past few decades [56]. obstacles to extracting features: Redundancy between adjacent 

spectral bands causes the availability of redundant information during data collection, preventing the best 

and most discriminative retrieval of spatial-spectral properties [44]. 

The high spatial variety and similarities across classes: Due to collection errors that cause information 

loss in terms of the unique identification, that is, the spectral signatures, and high intraclass variability, the 

hyperspectral dataset obtained comprises useless noise bands. Additionally, low resolution results in broad 

spatial regions being represented by each pixel on the Earth's surface. This produces spectral signature 

mixing, which increases interclass similarity in border regions, leading to inconsistencies and uncertainties 

for the employed classification algorithms [56]. 

Insufficient labeled data and a shortage of training samples: Aerial spectrometers can only gather a 

certain amount of hyperspectral data because of how much smaller the regions they cover. This causes the 

amount of training data for classification models to be limited [57]. Additionally, classes in HSIs often 

correlate to a single scene, and the learning processes for the classification models that are currently 

available demand labeled data. However, identifying each pixel by hand takes laborious and prolonged 

human talent [58]. 

Insufficient balance between interclass samples: Many existing methods are less beneficial in terms 

of improving minority class accuracy without affecting majority class accuracy because of the class 

imbalance concerns, which arise when each class sample has a large range of occurrences [59]. The 

increased dimensionality: Because such high-band images incorporate more information across several 

channels, estimate errors rise. For supervised classification methods, the curse of dimensionality poses a 

serious problem since it adversely affects both performance and accuracy [60]. 

Spectral unmixing and resolution enhancement for better feature extraction and distinguishing 

capability of the embedded objects are potential solutions to the aforementioned limitations, which also 

represent potential operations that can be performed to analyze and comprehend the HSIs. Other potential 

solutions include (3) image compression-restoration and dimensionality reduction, (4) spectral unmixing, 

and (5) image compression-restoration and resolution enhancement and (4) the use of strong classifiers that 

can address the aforementioned problems as well as encourage quick computing [44]. 

These difficulties were particularly noticeable for techniques that categorize HSI based on feature 

extraction from HSI. The operations on HSI got simple once ML/DL entered the picture since explicit 

feature extraction is not required. It also has several benefits including excellent noise handling and low 

time complexity. Despite having many advantages, ML/DL has a few downsides in some criteria [61], such 

as parameter adjustment, multiple local minima issues, and compression [57] overfitting, optimization, and 

convergence issues. 
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2.4 HYPER SPECTRAL CLASSIFICATION  

Technology developments have made it possible for cameras to continuously gather hundreds of 

spectral data points for each pixel in an image, which has led to an increase in the analysis of hyperspectral 

images (HSI) to use it in many application as mentioned in figure 4-5. 

 

 
Fig. 4. Percentage of Research efforts HSI conducted researches 

Рис. 4. Процент исследований, проведенных HSI 

 

Due to the numerous redundant spectral bands, the small number of training samples, and the non-

linear connection between the obtained spatial location and the spectral bands, HSI classification is difficult.  

 

 
Fig. 5. Percentage of Research efforts in the accuracy of different classification algorithms 

Рис. 5. Процент усилий по исследованию точности различных алгоритмов классификации 

 

Figure 5 shows the approximated percentage of research efforts to use classification for hyperspectral 

images. 

Our study emphasizes recent work in HSI classification utilizing conventional machine learning 

methods, such as transform-based methods, dimension reduction, support vector machines, and kernel-

based methods. Our research also explores Deep Learning (DL) methods for classifying HSI, including the 

use of autoencoders and 1D, 2D, and 3D-Convolutional Neural Networks. The comparison shows that DL-

based classification algorithms perform better than ML-based ones (Figure 6). 
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Fig. 6. Percentage of Research efforts in classification techniques 

Рис. 6. Процент усилий по исследованию методов классификации 

 

Additionally, it has been noted that spectral-spatial HSI classification surpasses pixel-by-pixel 

classification since it takes into account both spatial domain information and spectral characteristics. On 

widely used land cover datasets including Indian Pines, Salinas Valley, and Pavia University, the 

effectiveness of ML and DL-based classification approaches has been examined. 

 

 
Fig. 7. Percentage of Research efforts of majorly used datasets in existing techniques 

Рис. 7. Процентная доля исследований наиболее часто используемых наборов данных в 

существующих методах 

 

CONCLUSION 

Many methods and techniques have arisen to deal with the deployment of WSN within an extreme 

environment such as space, underwater, etc. in space most of the data are gathered using Hyperspectral 

images because they give more details, so the classification would be better. we reviewed many studies for 

such situations and found that Hyperer spectral classification fits the situation of using Hyperspectral 

classification as Wavelet-based classification algorithms because they ate light, fast learning, and accurate. 
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