

УДК : 330.4

DOI: 10.18413/2409-1634-2018-4-4-0-7

Федотов Д.А.

СОВЕРШЕНСТВОВАНИЕ МЕХАНИЗМА НОРМИРОВАНИЯ НАЧАЛЬНОЙ ЦЕНЫ КОНТРАКТА В СФЕРЕ ГОСЗАКУПОК НА ПРИМЕРЕ ЭКОНОМЕТРИЧЕСКОГО МОДЕЛИРОВАНИЯ ЦЕНЫ НОУТБУКА

Челябинский государственный университет, ул. Братьев Kashirinyh 129, Челябинск, 454001, Россия, e-mail: federer25@mail.ru

Научный руководитель: Любожева Лионелла Николаевна-доцент факультета лингвистики и перевода Челябинского государственного университета, кандидат филологических наук

Аннотация

В статье рассмотрены проблемы формирования начальной (максимальной) цены контракта в сфере госзакупок на примере поставки ноутбуков. Для обоснования начальной цены использовались методы эконометрического моделирования. Выявлены основные факторы, которые влияют на цену ноутбуков, то есть при увеличении: объема оперативной памяти, количества пикселей, производительности видеокарты, количество usb-портов цена ноутбука будет резко расти. Результаты исследования могут быть использованы в сфере контроля за расходованием бюджетных средств.

Ключевые слова: эконометрическое моделирование, государственные закупки, начальная цена контракта, бюджетный контроль

Fedotov D.A.	IMPROVEMENT OF THE MECHANISM OF RATIONINGTHE INITIAL CONTRACT PRICE IN THE FIELDOF PUBLIC PROCUREMENT ON THE EXAMPLEOF ECONOMETRIC MODELLING OF THE PRICEOF LAPTOP
	OF LAPTOP

Chelyabinsk State University, 129 Bratev Kashirinyh St., Chelyabinsk, 454001, Russia

e-mail: federer25@mail.ru

Academic adviser: Lubozheva Lionella Nikolaevna – Associate Professor, Faculty of Linguistics and Translation of Chelyabinsk State University, Candidate of Philology

Abstract

The article deals with the problems of formation of the initial (maximum) price of the contract in the field of public procurement on the example of laptop supply. Methods of econometric modeling were used to justify the initial price. The main factors that affect the price of laptops are revealed, that is, with an increase in: the amount of RAM, the number of pixels, the performance of the video card, the number of usb ports, the price of the laptop will grow sharply. The results of the study can be used in the field of control over budget spending.

Keywords: econometric modelling, state procurements, initial contract price, budget control.

Введение

In recent years, the number of public contracts for the purchases of laptops has increased. Due to the increasing number of disruptions in the public procurements system, a large number of scientific researches are being conducted into the background causes and for avoiding negative effects of an inefficient use of budgetary funds. Single and clear mechanism of monitoring activities during the state tenders has not yet been developed in Russia. So Rybnikova G.I. states that it is important «to study those stages of public procurement at which the supervisory authorities have difficulties» [Rybnikova G.I., Tevosyan K.M., 2016].

One of the key stages of any public procurement is planning in which the major difficult lies in analysis the price calculation and justification of proposed procurements. Therefore, the purpose of this article is to analyze the factors affecting the initial (maximum) price of laptops at the planning stage of state and municipal procurements with subsequent econometric model specification.

Основная часть

The core of any econometric analysis is based on the correct determining of model parameters which are more likely accounted for estimated value.

Modern laptops are delicate pieces of technology that consist of many elements. The significant factors affecting the laptop's price are listed in Table 1.

Table 1

Data, their designations and units of measurement

Таблица 1

Данные, их обозначения и единицы измерения					
Factor	Designation in Gretl	Units of measurement			
1.	Quantative variables				
CPU frequency	CPU	Number of GHz			
Core	Core	Core count			
Random access memory (RAM)	memory	Number of GB			
Hard disk drive	HDD	Number of GB			
Solid state driver	SSD	Number of GB			
Monitor inch	screen_size	Number of inches			
Pixels	pixel	Number of pixels			
Performance of video card	videocard_performance	As the percentage of the best Nvidia Titan V video card at 24.10.2018 [6]			
USB port 2.0	usb2	Number of pieces			
Usb port 3.x	usb3	Number of pieces			
Battery	baterry	Number of hours			
2	. Dummy variables				
Operation System (OS)	OS	1 – Windows 0 – other Os			
DVD-drive	DVDRW	1 – yes 0 – no			
Keyboard lightning	keyboard	1 – yes 0 – no			

Данные, их обозначения и единицы измерения

Factor	Designation in Gretl	Units of measurement
Laptop's material	material	1 – metal 0 – plastic
AMD video card	AMD	1 – yes 0 – no
Nvidia video card	Nvidia	1 – yes 0 – no
Intel video card	Intel	1 – yes 0 – no

For this study, 102 laptops were randomly selected from the official websites of the largest Russian online retailers of digital and home appliances: M.Video, DNS, TechnoPoint, Eldorado, Citilink. Laptops were selected into all price categories for accurate and reliable conclusions. The model was specified by Ordinary Least Squares (OLS-model) based on the data obtained using the GRETL program.

Модель 1: МНК, исполь	зованы наблюдени	я 1-102			
Зависимая переменная:	price				
Пропущены из-за совер	шенной коллинеар	ности: Intel			
	Коэффициент	Ст. ошибка	t-статистика	Р-значение	
const	-26977,6	14984,2	-1,800	0,0754	*
CPU	1916,66	2361,97	0,8115	0,4194	
core	-1000,27	1189,55	-0,8409	0,4028	
memory	3128,92	377,769	8,283	1,65e-012	***
HDD	-6,66356	2,97879	-2,237	0,0279	**
SSD	-5,81346	9,99607	-0,5816	0,5624	
screen_size	800,893	931,236	0,8600	0,3922	
pixel	0,00714860	0,00109095	6,553	4,30e-09	***
videocard_perfor~	778,756	164,676	4,729	9,00e-06	***
OS	-5890,85	2526,20	-2,332	0,0221	**
DVDRW	1854,28	2417,29	0,7671	0,4452	
keybord	6598,27	2872,22	2,297	0,0241	**
material	10206,2	2556,17	3,993	0,0001	***
battery	352,483	467,304	0,7543	0,4528	
AMD	-3095,83	3616,93	-0,8559	0,3945	
Nvidia	-6406,31	2896,84	-2,211	0,0297	**
usb2	4744,72	1468,48	3,231	0,0018	***
usb3	8223,12	1945,79	4,226	6,01e-05	***
ВНИМАНИЕ: матрица дан	ных близка к син	гулярной!			
Среднее зав. перемен	50998,50 Cm	. откл. зав. пере	мен 39647,29		
Сумма кв. остатков		-			
R-квадрат		пр. К-квадрат			
F(17, 84)		значение (F)			
		engion (MI D) mo	-	• • •	

Fig. 1. Multiple Linear Regression (MLR) model with all variables Рис. 1. Модель множественной линейной регрессии (МЛР) со всеми объясняющими переменными

It is necessary to assess the quality of the resulting model for further analysis.

1. The significance of the coefficients of the explanatory variables. It is considered in the Gretl program that coefficient is significant at a significance level of 10%», if the achieved level of significance (*p*-value) of the coefficient is less than 0.1 [Econometrics. Regression analysis using the package Gretl: Laboratory Workshop, 2014]. This requirement is satisfied by the variables *const*, *memory*, *HDD*, *pixel*, *videocard_performance*, *OS*, *keyboard*, *material*, *Nvidia*, *usb2* and *usb3* satisfy. For the other variables, the p-value of the coefficients has

turned out to be greater than 0.1, they were insignificant and therefore were excluded from further analysis.

2. t-statistics. Since the sample was 102 observations, so t-critical by t-Student is equal to 1.659 at a significance level of 10%. Comparing the obtained values, it appeared that the coefficients of *const, memory, HDD, pixel, videocard_performance, OS, keyboard, material, Nvidia, usb2* and *usb3* have t-statistics modulo more than t-critical, which indicates their statistical significance. And the remaining coefficients of CPU, core, SSD, screen_size, DVDRW, battery and AMD have t-statistics less than t-critical, it means they are not significant.

3. The significance of the regression equation in general according to Fisher's F-test (P-value (F)). «If the P-value (F) is less than 0.01, the equitation is significant at a significance level of 1% (at an assurance level of 99%)» [Econometrics. Regression analysis using the package Gretl: Laboratory Workshop, 2014]. Because of the P-value(F)=2.33e-26<0.01, the regression equitation is significant and it can be used in further analysis.

4. Standard error of the estimate is 9006.38 RUB with an average laptop's price at 50998.5 RUB (or 17.66%), which indicates the satisfactory accuracy of the model.

5. Goodness of fit to selected data by the adjustable coefficient of determination (adj. R-squared). Using the coefficient of determination, one can be defined «the matching rate of the found equation to the actual data. Adj. R-squares in this model was 0.9484, so the factor of laptop's price change is explained sum of squares by 94.84%. Thus, the quality of the fit equation is very accurate.

6. Goodness of fit to selected data by the mean absolute percentage error (MAPE). In this regression equation was 16.4%. «If the model is fitted with high accuracy, so MAPE<10%, good – 10% <MAPE<20%, satisfactory – 20% <MAPE<50%, unsatisfactory – MAPE>50%». That was, the goodness of fit is good [Absolute approximation error, 2018].

The MLR model after eliminating insignificant explanatory variables is presented in Figure 2.

Модель 2: МНК, использованы наблюдения 1-102 Зависимая переменная: price					
		г Ст. ошибка	t-статистика		
		4004,31			***
memory	3015,16	322,166	9,359	5,60e-015	***
HDD	-4,74393	2,17351	-2,183	0,0316	**
pixel	0,006673	310 0,000882544	7,561	3,07e-011	***
videocard perfor~	685,802	130,763	5,245	1,01e-06	***
os –	-6207,89	2447,57	-2,536	0,0129	**
keybord	5971,24	2503,69	2,385	0,0192	**
material	9596,99	2434,56	3,942	0,0002	***
Nvidia	-5902,24	2474,71	-2,385	0,0192	**
usb2	5216,64	1415,97	3,684	0,0004	***
usb3	10099,6	1663,05	6,073	2,86e-08	***
Среднее зав. перемен	50998,50	Ст. откл. зав. перем	ен 39647,29		
Сумма кв. остатков	7,25e+09	Ст. ошибка модели	8923,054		
R-квадрат	0,954363	Испр. R-квадрат	0,949348		
F(10, 91)	190,2982	Р-значение (F)	1,84e-56		
Лог. правдоподобие	-1066,744	Крит. Акаике	2155,488		
Крит. Шварца	2184,363	Крит. Хеннана-Куинна	2167,181		

Fig. 2. MLR model after eliminating insignificant explanatory variables Рис. 2. Модель МЛР после исключения незначимых объясняющих переменных Adj. R-squared improved from 0.9484 to 0.9493. Thus, the eliminating insignificant explanatory variables has turned out to be true. All coefficients were significant (p-value less than 0.1).

At the next stage, «the existence of the strong correlation between explanatory variables» was determined [Econometrics. Regression analysis using the package Gretl: Laboratory Workshop, 2014], so multicollinearity test was performed (Fig. 3).

All values of variance inflation factors (VIF) of explanatory variables were less than 10; it has shown the absence of multicollinearity between these variables.

Further, the data were checked for the unequal spread (heteroscedasticity), to the White test for heteroscedasticity was carried out (Fig. 4).

Значения > 10.0 могут	указывать	на	наличие	мультиколлинеарности
memory	2,853			
HDD	-			
pixel	1,991			
videocard_performance	3,561			
OS	1,066			
keybord	1,995			
material	1,711			
Nvidia	1,886			
usb2	2,106			
usb3	4,405			

Fig. 3. Multicollinearity test Рис. 3. Тест на мультиколлинеарность

```
Тестовая статистика: TR^2 = 82,693952,
p-значение = P(Хи-квадрат(61) > 82,693952) = 0,033706
```

Fig. 4. White test for heteroscedasticity Рис. 4. Тест Вайта на гетероскедастичность

Since the p-value was equal to 0.0337 and it was less than 0.05; this indicated the presence of heteroscedasticity. Therefore, calculations of robust errors were conducted, which has corrected the values of standard errors of the coefficient estimates. The MLR model adjusted on heteroscedasticity is shown in Figure 5.

Thus, from an economic point of view the interpretation of all coefficients of the explanatory variables was correct. All coefficients were significant. The standard error of the model was 8923.05 with a mean of 50998.5 (or

17.5%). Adjusted R-square has increased to 0.9484 (more than 0.9 is considered to be highly accurate) [Afanasev V.N., Semenychev E.V., 2014].

At the final stage, it was important to understand whether the specification of the model was correct or whether it was switching from a linear to a non-linear model. To this end, Regression Equation Specification Error Test (RESET-test Ramsey) was carried out on the correctness of the linear specification. RESETtest is shown in Figure 6.

Модель 3: МНК, исполь:	зованы наблюден	ия 1-102			
Зависимая переменная:	price				
Робастные оценки стан;	цартных ошибок	(с поправкой на г	етероскедастич	ность), вар	иант НС1
				_	
		Ст. ошибка			
const					***
memory	3015,16	390,561	7,720	1,45e-011	***
HDD	-4,74393	1,89609	-2,502	0,0141	**
pixel	0,0066731	0 0,00107690	6,197	1,65e-08	***
videocard perfor~	685,802	112,826	6,078	2,80e-08	***
05	-6207,89	2844,68	-2,182	0,0317	**
keybord	5971,24	2143,88	2,785	0,0065	***
material	9596,99	2335,47	4,109	8,67e-05	***
Nvidia	-5902,24	2148,21	-2,748	0,0072	***
usb2	5216,64	1332,18	3,916	0,0002	***
usb3	10099,6	1695,75	5,956	4,80e-08	***
	e				
ВНИМАНИЕ: матрица дан	ных олизка к си	нгулярнои:			
Среднее зав. перемен	50998,50 C	т. откл. зав. пер	емен 39647,29		
Сумма кв. остатков	7,25e+09 C	т. ошибка модели	8923,054		
R-квадрат		спр. R-квадрат			
F(10, 91)					
Лог. правдоподобие	-1066,744 Kj	рит. Акаике	2155,488		
Крит. Шварца	2184,363 K	рит. Хеннана-Куин	на 2167,181		

Fig. 5. The model adjusted on heteroscedasticity Рис. 5. Модель МЛР с поправкой на гетероскедастичность

	Коэффициент	Ст. ошибка	t-статистика	Р-значение	
const	-2513,36	6238,91	-0,4029	0,6880	
memory	2316,56	426,459	5,432	4,70e-07	***
HDD	-2,67481	2,28382	-1,171	0,2446	
pixel	0,00531517	0,00102678	5,177	1,37e-06	***
videocard perfor~	495,931	149,628	3,314	0,0013	***
os	-5935,64		-2,486	0,0148	**
keybord	7567,27	2527,02	2,995	0,0035	***
material	8611,90	2406,76	3,578	0,0006	***
Nvidia	-2840,67	2722,94	-1,043	0,2996	
usb2	2216,16	1854,90	1,195	0,2353	
usb3	7386,80	1970,35	3,749	0,0003	***
vhat^2		3,93536e-07		0,0175	**

Рис. 6. RESET тест

Since p-value was equal to 0.0175 and less than 0.05; the MLR model in Figure 5 was presented in the wrong functional form (with a 95% assurance level). Therefore, non-linear terms were added to this regression equation, so a polynomial was considered (Fig. 7).

Polynomial model. Adding squared variables haven not helped to improve the goodness of the model: all variables were insignificant. As for the multiplication of explanatory variables, there were several significant coefficients

(in this case, quantitative variables were multiplied by dummy):

1. Multiplication of battery (quantitative) and Intel (dummy): battery_OS;

2. Multiplication of SSD (quantitative) and Intel (dummy): SSD_Intel;

3. Multiplication of CPU (quantitative) and OS (fictitious): CPU_OS;

4. Multiplication of screen_size (quantitative) and Intel (dummy): screen_size_Intel.

When non-linear terms were introduced, it was also necessary to introduce the desired variables into the model, so as not to disturb the economic interpretation. The model with new non-linear variables (polynomial model) is presented in Figure 7.

	Коэффициент	Ст. ошибка	t-статистика	Р-значение	
const	-112491	21744,3	-5,173	1,54e-06	***
memory					
pixel	0,0071689	0 0,00113523	6,315	1,23e-08	***
pixel videocard_perfor~	429,525	161,609	2,658	0,0094	***
os		13530,2			
keybord	5636,04	2735,55	2,060	0,0425	**
material	6510,67	2462,76	2,644	0,0098	***
usb2	5233,82	1345,18	3,891	0,0002	***
usb3	9261,76	1629,82	5,683	1,87e-07	***
battery OS	-3258,75	1018,68	-3,199	0,0019	***
battery	3330,49	1053,12	3,163	0,0022	***
Intel	59380,6	21900,8	2,711	0,0081	***
		15,6622			***
SSD Intel	-45,8205	17,7638	-2,579	0,0116	**
CPU	11206,7	3989,39	2,809	0,0062	***
CPU OS	-8591,80	4196,80	-2,047	0,0438	**
screen size	3094,64	1226,40	2,523	0,0135	**
screen_size_Intel	-3397,57	1379,81	-2,462	0,0158	**
НИМАНИЕ: матрица дан	ны х б лизка к син	гулярной!			
реднее зав. перемен	50998,50 Cr	. откл. зав. перем	ен 39647,29		
умма кв. остатков	5,55e+09 Cr	. ошибка модели	8131,815		
-квадрат	0,965013 Ис	пр. R-квадрат	0,957932		
(17, 84)		значение (F)			

Fig. 7. Polynomial model Рис. 7. Полиномиальная модель

From an economic point of view the interpretations of all coefficients of the explanatory variables have turned out to be correct. Compared to the model in Figure 5, all coefficients were significant; the standard error of the estimate decreased from 8923.05 RUB to 8131.81 RUB (or 15.94%); adj. R-squared increased to 0.9579, which means the inclusion of new variables has turned out to be true. MAPE was evaluated to be 14.44% that was a little better than 16.4% in Figure 5. That was, the goodness of fit to selected data was good [Absolute approximation error, 2018]. Because of the result of RESET-test, the hypothesis of a well-chosen model specification has declined, models in nonlinear forms were considered: exponential, logarithmic, power-law, semi-logarithmic.

1. Exponential model: the dependent variable was represented by the logarithm, and the independent variables were in the original form. Verification of all problems: multicollinearity, heteroscedasticity, equality of coefficients. After their recovering the following model was obtained (Fig. 8).

Exponent: МНК, использованы наблюдения 1-102 Зависимая переменная: 1 price

	Коэффициент	Ст. ошибка	t-статистика	Р-значение	
const	8,69552	0,237334	36,64	2,87e-056	***
CPU	0,159719	0,0463449	3,446	0,0009	***
memory	0,0194380	0,00750123	2,591	0,0111	**
SSD	0,000450035	0,000200036	2,250	0,0269	**
screen size	0,0564409	0,0168817	3,343	0,0012	***
pixel _	4,29085e-08	2,33069e-08	1,841	0,0689	*
OS	-0,102005	0,0573663	-1,778	0,0787	*
keybord	0,314172	0,0607564	5,171	1,37e-06	***
material	0,280529	0,0568903	4,931	3,66e-06	***
Nvidia	0,125090	0,0543187	2,303	0,0236	**
usb3	0,125623	0,0328594	3,823	0,0002	***
Среднее зав. п	еремен 10,6	52606 Cr. or	гкл. зав. перем	ен 0,64026	6
Сумма кв. оста	тков 4,03	37548 Ст. он	шибка модели	0,21063	9
R-квадрат	0,90	02484 Испр.	R-квадрат	0,89176	8
F(10, 91)	84,2	21824 Р-знач	иение (F)	1,49e-4	1

Fig. 8. Exponential model Рис. 8. Экспоненциальная модель

All coefficient were significant. The standard error of estimate was low: 0.2106 with a mean of 10.6261 (or 2%). Adj. R-squared was equal to 0.8918 (about 0.9 is considered to be highly accurate) [Afanasev V.N., Semenychev E.V., 2014]. MAPE was 1.55%, that was significantly lower than 10%, therefore it indicat-

ed a high accuracy fit of the model to the sample data.

2. The logarithmic model: the dependent variable was presented in its original form, and the independent variables were represented by the logarithm (Fig. 9).

Logarifm: МНК, исполь Зависимая переменная: Робастные оценки стан	price		ой на гетерос	кедастичност	ь), в
	Коэффициент	Ст. ошибка	t-статистика	а Р-значение	
const	-452619	93388,1	-4,847	4,77e-06	***
1 memory	38116,3	7126,49	5,349	5,90e-07	***
l pixel	27774,8	6319,38	4,395	2,83e-05	***
l videocard perf~	8339,72	2100,04	3,971	0,0001	***
l_battery	10322,3	4388,69	2,352	0,0207	**
Среднее зав. перемен	50998,50	Ст. откл. з	ав. перемен	39647,29	
Сумма кв. остатков	3,52e+10	Ст. ошибка	модели	19043,20	
R-квадрат	0,778434	Испр. R-ква	драт	0,769297	
F(4, 97)	20,76482	Р-значение	(F)	2,19e-12	

Fig. 9. Logarithmic model Рис. 9. Логарифмическая модель

All coefficient were significant. The standard error of estimate was high: 19043.20 RUB with a mean of 50998.50 RUB (or 37.34%). Adj. R-squared was equal to 0.7693 (about 0.75 is considered to be the lower acceptable value) [Afanasev V.N., Semenychev

E.V., 2014]. MAPE was 34.33%, so the model fit was satisfactory.

3. The power-law model: dependent and independent variables were presented in logarithm (Fig. 10).

stepen: MHK, использо			
		1-102	
Зависимая переменная:	1_price		
	Коэффициент	Ст. ошибка t-статистик	а Р-значение
const	4,37504	0,858471 5,096	1,73e-06 ***
l_core	-0,190388	0,0772941 -2,463	0,0156 **
1 memory	0,657717	0,0707091 9,302	4,71e-015 ***
l_pixel	0,306454	0,0652644 4,696	8,84e-06 ***
l_videocard_perf~	0,245423	0,0358586 6,844	7,23e-010 ***
l_battery	0,210947	0,0657475 3,208	0,0018 ***
Среднее зав. перемен	10,62606	Ст. откл. зав. перемен	0,640266
Сумма кв. остатков	5,859630	Ст. ошибка модели	0,247058
R-квадрат	0,858477	Испр. R-квадрат	0,851106
F(5, 96)	116,4669	Р-значение (F)	3,61e-39
		e nower-law model	

Fig 10. The power-law model Рис. 10. Степенная модель

All coefficient were significant. The standard error of estimate was low: 0.2471 with a mean of 10.6261 (or 2.32%). Adj. R-squared was equal to 0.8511 (less than 0.9 indicates a lack of high accuracy). MAPE was 1.87%, that

was significantly lower than 10%, therefore it indicated a high accuracy fit of the model to the sample data.

4. The semi-logarithmic model is shown in Figure 11.

polulog: МНК, использованы наблюдения 1-102 Зависимая переменная: l_price					
	Коэффициент	Ст. ошибка	t-статисти	ка Р-значение	
const	6,43668	0,716681	8,981	4,11e-014	**
1_memory	0,412848	0,0578832	7,132	2,52e-010	**
l_pixel	0,163844	0,0482918	3,393	0,0010	**
l_videocard_perf~	0,0979744	0,0314642	3,114	0,0025	**
keybord	0,239628	0,0537784	4,456	2,42e-05	**
material	0,189603	0,0488636	3,880	0,0002	**
AMD	-0,118747	0,0587931	-2,020	0,0464	**
usb3	0,100179	0,0271164	3,694	0,0004	**
CPU	0,0989105	0,0430834	2,296	0,0240	**
X11 X12	0,000291091	0,000113619	2,562	0,0121	**
HDD	-0,000374044	0,000114036	-3,280	0,0015	**
OS	-0,206083	0,0708899	-2,907	0,0046	**
screen_size	0,0379929	0,0160810	2,363	0,0203	**
реднее зав. перемен	10,62606	Ст. откл. зав	. перемен	0,640266	
умма кв. остатков	2,623745	Ст. ошибка мо	дели	0,171698	
-квадрат	0,936631	Испр. R-квадр	ат	0,928087	
(12, 89)	109,6222	Р-значение (F)	7,05e-48	

Fig. 11. The semi-logarithmic model Рис. 11. Полулогарифмическая модель All coefficient were significant. The standard error of estimate was low: 0.1717 with a mean of 10.6261 (or 1.62%). Adj. R-squared was equal to 0.9281(more than 0.9 is considered to be highly accurate). MAPE was 1.21%, that was significantly lower than 10%, therefore it indicated a high accuracy fit of the

model to the sample data.

The next stage, the comparison of the resulting models was carried out. Comparison is possible only if the models are presented in the same type of dependent variables, so in the same units of measurement. The comparative Table 2 is below.

Table 2

Таблица 2

Сравнительная таблица моделей					
Model/Criterion	Adj. R-squared	Standard error of	Mean absolute percent-		
	5 1	the estimate	age error (MAPE)		
1. The dependent variable is in rubles					
Multiple Linear Regression	0.9493	8923.05	16.95%		
Polynomial	0.9579	8131.81	14.44%		
Logarithmic	0.7693	19043.20	34.33%		
2. The dependent variable is presented in logarithm-rubles					
Exponential	0.8918	0.2106	1.55%		
Power-law	0.8511	0.2471	1.87%		
Semi-logarithmic	0.9281	0.1717	1.21%		

Comparative table on models

Thus, according to all indicators the polynomial model was better in the first case and the semi-logarithmic – in the second case. The choice of the best model was carried out to the non-nested models test (PE-test). Figure 12 shows the models with predictions of a competing model.

For the PE-test, the coefficient of the variable *lin* (the difference between the logarithm of the forecast of the polynomial model and the forecast of the semi-logarithmic model) and *log* (the difference between the forecast of the polynomial model and the exposed forecast of the semi-logarithmic) were calculated [Econometrics. Regression analysis using the package Gretl: Laboratory Workshop, 2014]. For the polynomial model, the coefficient for the variable *lin has* turned out to be significant (the p-value was 0.0041), so the model can be improved.

For the semi-log model, the coefficient of the variable *log* has also turned out to be significant (the p-value was 0.0009), so the model can be improved too. Since the coefficients in the both models are significant, it was not possible to make a definite conclusion. Therefore the models were compared by the value of significance. Since the p-value (0.0041) was larger in the polynomial model than in the semilogarithmic model (0.0005), then the coefficient in the polynomial was less significant.

1	2
h	-≺
U	\mathbf{J}

	Коэффициент	Ст. ошибка	t-статистика	Р-значение	
const	-114949	21875,3	-5,255	1,13e-06	*
memory	2262,53	373,981	6,050	4,01e-08	*
pixel	0,00775341	0,00100198	7,738	2,16e-011	*
videocard perfor~	467,163	129,704	3,602	0,0005	*
05 –	42566,7	10164,7	4,188	6,98e-05	*
keybord	4685,35	2366,98	1,979	0,0511	*
material	6706,07	2326,43	2,883	0,0050	*
usb2	5246,92	1181,76	4,440	2,75e-05	*
usb3	9373,13	1426,37	6,571	4,12e-09	×
battery OS	-3784,24	745,255	-5,078	2,31e-06	*
battery	4076,93	761,822	5,352	7,59e-07	*
Intel	39901,7	20917,1	1,908	0,0599	×
SSD	48,1242	13,5567	3,550	0,0006	*
SSD_Intel	-45,1367	15,7974	-2,857	0,0054	*
CPU	13085,8	3499,36	3,739	0,0003	×
X2_X7	-10411,4	3562,02	-2,923	0,0045	*
screen_size	2639,72	1136,47	2,323	0,0226	*
screen_size_Intel	-2097,31	1314,45	-1,596	0,1144	
lin	-19889,9	6729,88	-2,955	0,0041	*
lin	-19889,9 Коэффициент		-2,955 -статистика	0,0041 Р-значение	¥
					*
const	Коэффициент	Ст. ошибка t	-статистика	Р-значение	
lin const L_memory L pixel	Коэффициент 7,10665	Ст. ошибка t	-статистика 10,09	Р-значение 2,35е-016	* *
const L_memory L_pixel	Коэффициент 7,10665 0,443669	Ст. ошибка t 0,704300 0,0553911	-статистика 10,09 8,010	Р-значение 2,35е-016 4,43е-012	*
const L_memory L_pixel L_videocard_perf~	Коэффициент 7,10665 0,443669 0,101632	Ст. ошибка t 0,704300 0,0553911 0,0490655	-статистика 10,09 8,010 2,071	Р-значение 2,35е-016 4,43е-012 0,0413	* * *
const L_memory L_pixel L_videocard_perf~ ceybord	Коэффициент 7,10665 0,443669 0,101632 0,102991	Ст. ощибка t 0,704300 0,0553911 0,0490655 0,0297480 0,0509041	-статистика 10,09 8,010 2,071 3,462	Р-значение 2,35е-016 4,43е-012 0,0413 0,0008	* * * *
const L_memory L_pixel L_videocard_perf~ ceybord Material	Коэффициент 7,10665 0,443669 0,101632 0,102991 0,251649 0,199354	Ст. ощибка t 0,704300 0,0553911 0,0490655 0,0297480 0,0509041 0,0462298	-статистика 10,09 8,010 2,071 3,462 4,944 4,312	Р-значение 2,35е-016 4,43е-012 0,0413 0,0008 3,64е-06 4,21е-05	* * * * *
const L_memory L_pixel L_videocard_perf~ ceybord material	Коэффициент 7,10665 0,443669 0,101632 0,102991 0,251649 0,199354 -0,128047	Ст. ощибка t 0,704300 0,0553911 0,0490655 0,0297480 0,0509041 0,0462298 0,0555851	-статистика 10,09 8,010 2,071 3,462 4,944 4,312 -2,304	Р-значение 2,35е-016 4,43е-012 0,0413 0,0008 3,64е-06 4,21е-05 0,0236	* * *
const memory L_pixel L_videocard_perf~ ceybord material AMD usb3	Коэффициент 7,10665 0,443669 0,101632 0,102991 0,251649 0,199354 -0,128047 0,106707	Ст. ощибка t 0,704300 0,0553911 0,0490655 0,0297480 0,0509041 0,0462298 0,0555851 0,0256768	-статистика 10,09 8,010 2,071 3,462 4,944 4,312 -2,304 4,156	Р-значение 2,35е-016 4,43е-012 0,0413 0,0008 3,64е-06 4,21е-05 0,0236 7,50е-05	* * * * * *
const memory L_pixel videocard_perf~ ceybord material MDD usb3 CPU	Коэффициент 7,10665 0,443669 0,101632 0,102991 0,251649 0,199354 -0,128047 0,106707 0,102227	Ст. ощибка t 0,704300 0,0553911 0,0490655 0,0297480 0,0509041 0,0462298 0,0555851 0,0256768 0,0406957	-статистика 10,09 8,010 2,071 3,462 4,944 4,312 -2,304 4,156 2,512	Р-значение 2,35е-016 4,43е-012 0,0413 0,0008 3,64е-06 4,21е-05 0,0236 7,50е-05 0,0138	* * * * * * *
const memory pixel videocard_perf~ ceybord material MD usb3 CPU X11_X12	Коэффициент 7,10665 0,443669 0,101632 0,102991 0,251649 0,199354 -0,128047 0,106707 0,102227 0,000325709	Ст. ощибка t 0,704300 0,0553911 0,0490655 0,0297480 0,0509041 0,0462298 0,0555851 0,0256768 0,0406957 0,000107764	-статистика 10,09 8,010 2,071 3,462 4,944 4,312 -2,304 4,156 2,512 3,022	Р-значение 2,35е-016 4,43е-012 0,0413 0,0008 3,64е-06 4,21е-05 0,0236 7,50е-05 0,0138 0,0033	* * * * * * * *
const l_memory l_pixel L_videocard_perf~ ceybord material AMD usb3 CPU K11_X12 HDD	Коэффициент 7,10665 0,443669 0,101632 0,102991 0,251649 0,199354 -0,128047 0,106707 0,102227 0,000325709 -0,000444604	Ст. ощибка t 0,704300 0,0553911 0,0490655 0,0297480 0,0509041 0,0462298 0,0555851 0,0256768 0,0406957 0,000107764 0,000109626	-статистика 10,09 8,010 2,071 3,462 4,944 4,312 -2,304 4,156 2,512 3,022 -4,056	Р-значение 2,35е-016 4,43е-012 0,0413 0,0008 3,64е-06 4,21е-05 0,0236 7,50е-05 0,0138 0,0033 0,0001	* * * * * * * * *
const l_memory l_pixel l_videocard_perf~ ceybord material MD usb3 CPU X11_X12	Коэффициент 7,10665 0,443669 0,101632 0,102991 0,251649 0,199354 -0,128047 0,106707 0,102227 0,000325709	Ст. ощибка t 0,704300 0,0553911 0,0490655 0,0297480 0,0509041 0,0462298 0,0555851 0,0256768 0,0406957 0,000107764	-статистика 10,09 8,010 2,071 3,462 4,944 4,312 -2,304 4,156 2,512 3,022	Р-значение 2,35е-016 4,43е-012 0,0413 0,0008 3,64е-06 4,21е-05 0,0236 7,50е-05 0,0138 0,0033	* * * * * * * * * *

Fig. 12. PE-test results Рис. 12. Результаты PE-теста

Заключение

Thus, the polynomial model was chosen or further econometric analysis (Fig. 7). Let us give an economic interpretation of the coefficients of the explanatory variables in the total influence of all factors:

1. If the amount of RAM is increased by 1GB, the laptop's price will increase on average by 2,462.94 RUB, other things being equal.

2. If the number of pixels is increased by 1000000, the laptop's price will increase on

average by 7168.90 RUB, other things being equal

3. If the performance of the video card is increased by 1% the laptop's price will increase on average by 429.53 RUB, other things being equal.

4. If the number of usb-ports 2.0 is increased by 1 unit, the laptop's price will increase on average by 5233.82 RUB, other things being equal.

5. If the number of usb-ports 3.x is increased by 1 unit, the laptop's price will increase on average by 9,261.76 RUB, other things being equal.

6. If the battery life is increased by 1 hour, the laptop's price will increase on average by 3330.49 RUB.

7. If the CPU's frequency is increased by 1 GHz, the laptop's price will increase on average by 11206.7 RUB.

8. The laptops with keyboard lightning will cost more on average by 5636.04 RUB than laptops with non-lightning.

9. The laptops with a metal case will cost more on average by 6,510.67 RUB than laptops with a plastic case.

10. The price of the laptops with the Windows OS is on average by 34994.60 RUB higher than other operating systems, provided that:

if the battery life is increased by 1
 hour, the price of the laptops with Windows OS
 will grow less on average by 3,258.75 RUB
 than laptops with another OS;

 if the CPU's frequency is increased
 by 1 GHz, the price of the laptops with Windows OS will grow less on average by 8591.80
 RUB than laptops with another OS;

11. If the volume of solid-state drive (SSD) is increased be 1 GB, the laptop's price will increase on average by 46.99 RUB;

12. If the diagonal of the screen is increased by 1 inch, the laptop's price will increase on average by 3094.64 RUB;

13. The price of the laptops with Intel graphics card will cost more on average by 59380.60 RUB higher than laptops with AMD and Nvidia under two conditions:

-if the value of SSD is increased by 1 GB, the price of the laptops with Intel graphics cards will grow less on average by 45.82 RUB less than laptops with AMD and Nvidia videocards;

- if the diagonal of the screen is increased by 1 inch, the price of the laptops with Intel graphics cards will grow less on average by 3397.57 less than laptops with AMD and Nvidia videocards.

So during the research the model was built based on econometric analysis which allowed to draw the conclusion on the optimal laptop's price under the influence of various factors. These factors were explained the laptop's price by 95,79%.

The model has an error of 15,95%. The error can be reduced by increasing the number of observations and the number of factors. If an econometric model is built for using in practice, we can add factors such as laptop weight, processor generation, battery capacity, RAM frequency, display matrix type, memory card support, the presence of Kensington lock slot, etc.

Use the resulting econometric model on a specific example. Take from official website of the State Procurement the Purchase №31807033837 to deliver the computers and one laptop, posted on 10.23.2018 [5]. Under the contract, one laptop is purchased with a stated initial contract price of 134750.49 RUB. These terms of purchase are suitable for the resulting econometric model as the delivery is carried out at retail. According to the information that is specified in the technical project, it is expected to purchase a laptop model Dell XPS15 15.6". In this laptop model uses the following parameters, listed in Table 3.

Table 3

Dell XPS15 15.6" laptop settings shown in the information card

Таблица 3

Параметры ноутбука Dell XPS15 15.6", указанные в информационной карте		
Factor	Measurement	
CPU frequency	2,5 GHz	
Core	4 cores	
Random access memory (RAM)	8 GB	
Hard disk drive	1000 GB	
Solid state driver	128 GB	
Monitor inch	15,6	
Pixels	2073600	

НАУЧНЫЙ РЕЗУЛЬТАТ. ЭКОНОМИЧЕСКИЕ ИССЛЕДОВАНИЯ
RESEARCH RESULT. ECONOMIC RESEARCH

Factor	Measurement		
Performance of video card	26,9%		
USB ports 2.0	0		
USB ports 3.x	4		
Battery	10 hours		
Operation System (OS)	Windows OS (1)		
DVD-drive	No (0)		
Keyboard lightning	Yes (1)		
Laptop's material	Metal (1)		
Nvidia video card	Yes (1)		

Substituting these data into the econometric model, the average price of a laptop was 80906.75 RUB. Taking into account the standard error of regression, the maximum contract price should not exceed 93807.33 RUB. The stated contact price of 134750.49 RUB significantly exceeds the optimal price of the laptop by 40943.16 RUB.

Thus, using the econometric model allows to create a rationing mechanism for initial (maximum) contract price of purchases and to increase the efficiency of budget spending.

Список литературы

1. Афанасьев В.Н., Семенычев Е.В., 2014. Критерии качества моделей экономической динамики // Вестник Самарского муниципального института управления. 2014. №2 (29). С. 7-17.

2. Рыбникова Г.И, Тевосян К.М., 2016. Контроль государственных закупок в системе повышения эффективности бюджетного процесса // Территория наук. Экономика и экономические науки. 2016. №5. С. 168-173.

3. Эконометрика. Регрессионный анализ с использованием пакета Gretl: Лабораторный практикум, 2014. / Т.Б. Багильдеева, Е.А. Постников // Центр научного сотрудничества. 2014. – 80 с.

4. Абсолютная ошибка аппроксимации, 2018. [Электронный ресурс] // URL: <u>https://math.semestr.ru/trend/prim3.php</u> (дата обращения 24.10.2018).

5. Единая информационная система в сфере закупок. Закупка №31807033837 // URL:http://zakupki.gov.ru/223/purchase/public/pur chase/info/common-

info.html?regNumber=31807033837 (дата обрашения 24.10.2018).

6. Рейтинг производительности видеокарт, 2018. // URL: https://technical.city/ru/video/rating (дата обращения 24.10.2018).

References

1. Afanasev V.N., Semenychev E.V., 2014. Performance Criteria of Models of Economic Dynamic // Bulletin of Samara Municipal Institute of Management. 2014. No. 2 (29). P. 7-17. (in Russian)

2. Rybnikova G.I., Tevosyan K.M., 2016. Control of the state purchases in the system of increasing the efficiency of the budget process // Territory of Sciences. Economics and Economic Sciences. 2016. No 5. P. 168-173. (in Russian)

3. Econometrics. Regression analysis using the package Gretl: Laboratory Workshop, 2014 / T.B. Bagildeeva, E.A. Postnikov // Center for Scientific Cooperation. 2014. 80 p. (in Russian)

4. Absolute approximation error, 2018 [Electronic resource] // URL: <u>https://math.semestr.ru/trend/prim3.php</u> (date of access: October, 24 2018).

5. The official website of the Unified Procurement Information System. Purchase No 31807033837 // URL: http://zakupki.gov.ru/223/purchase/public/purchase/ info/common-info.html?regNumber=31807033837 (date of access: October, 24 2018). (in Russian)

6. Video card performance rating, 2018. // URL: <u>https://technical.city/ru/video/rating</u> (date of access: October, 24 2018). (in Russian)

Информация о конфликте интересов: авторы не имеют конфликта интересов для декларации.

Conflicts of Interest: the authors have no conflict of interest to declare.

Федотов Д.А. – студент Челябинского государственного университета, директор ООО Финансовый центр «Кредитная линия»

Fedotov Danil Aleksandrovich – student Chelyabinsk State University, director of «Credit Line» Financial Center LLC