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Abstract
Introduction: TRPV1 receptors play a significant physiological role. To study pharmacological activity of new ago-
nists and antagonists is important for the development of new drugs. This paper reports on the features of polypeptide 
antagonists of TRPV1 based on in vivo data.

Materials and methods: The study was performed on 250 mature white ICR male mice weighing 25–30 g. Tests were 
conducted to evaluate the pharmacological activity and biological properties of APHC1-3 and a hybrid polypeptide A13 
in thermal pain,, inflammation and body temperature tests.

Results and discussion: APHC1-3 polypeptides showed significant antinociceptive and analgesic activity in the dose 
range of 0.01–0.1 mg/kg, without causing hyperthermia. A single substitution of the aspartic acid residue of АРНС1 
polypeptide at position 23 by transferring one asparagine residue from the cognate peptide АРНС3 led to a significant 
change in the properties of the molecule. A new polypeptide A13 did not alter the thermal sensitivity of the mice, but 
showed the most significant analgesic activity in the acid-induced pain model, unlike АРНС1. A13 inhibits TRPV1 and 
affects body temperature as a classic antagonist of this receptor.

Conclusion: Antagonistic properties of A13 became different from the properties of both initial analgesic polypeptides. 
Polypeptides APHC1-3 can be referred to as a new class of modulators of TRPV1, which produce a pronounced anal-
gesic effect without hyperthermia.
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Introduction

Modern strategies for searching for new potential anal-
gesics are associated with changes in the sensitivity of 
nociceptors, affecting acid-sensitive ion channels. Iden-
tification of receptors and processes involved in the for-

mation and transmission of pain signals pave the way for 
the use of new tools that provide more effective control 
of pain. One of the modern approaches to the treatment of 
pain is the use of highly selective agents that can specifi-
cally block receptors directly perceiving pain stimuli and/
or mediators of inflammation.
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The influence on the family of transient receptor poten-
tial (TRP) channels may be a new mechanism of pain re-
lief. The target for potential modulation is TRPV1 channels 
(transient receptor potential vanilloid 1), also known as the 
capsaicin receptor, valinoid receptor, or VR1. In patholog-
ical conditions, TRPV1 is involved in inflammatory pains, 
neuropathic and visceral pains, as well as in inflammatory 
diseases, pancreatitis and migraines (Immke and Gavva 
2006). TRPV1 channels are involved in the perception 
of exogenous risk factors, chemical irritation, mechanical 
impact and the effects of low temperatures, causing acute 
pain. It is activated by changes in the internal environment 
of the body, that is, inflammation, which is often accompa-
nied by chronic pain (Levine and Alessandri-Haber 2007).

From the extract of the marine anemone Heteractis cris-
pa, natural polypeptide modulators of TRPV1 – called An-
algesic Polypeptide Heteractis Crispa (APHC) (Philyppov 
et al. 2012) – were isolated and characterized. A polypep-
tide АРНС1 (Мr~6187 Da), polipeptise АРНС2 (Мr~6185 
Da), the amino acid sequence of which is different from 
that of АРНС1 by a replacement of Val31 with Pro31 (An-
dreev et al. 2009), and АРНС3 (Мr~6111 Da), which is 
different from APCH1 by replacing Arg18 with Pro 18 and 
Ala52 with Gly52 (Kozlov et al. 2009). The isolated pol-
ypeptides not only inhibit the TRPV1 receptor in model 
experiments in vitro (Andreev et al. 2013), but also pro-
duce a potentiating effect when using low concentrations 
of activating agents. The analysis of the three-dimensional 
structure of polypeptides APHC1 and APHC3 showed the 
presence of active amino acid residues modulating TRPV1 
channels. Based on the data obtained, a hybrid polypeptide 
– A13 – was synthesized (Dyachenko et al. 2017).

The aim of this paper was to study the features of phar-
macological activity of new polypeptide modulators acting 
on acid-sensitive ion channels TRPV1 in the experiment.

Materials and methods

The studied APCH 1-3 and A13 polypeptides were produ-
ced as described earlier in (Andreev et al. 2008, Andreev et 
al. 2009, Andreev et al. 2010, Dyachenko et al. 2017). The 
experiments on the animals were conducted in accordance 
with the Guide for Care and Use of Laboratory Animals, 
after the approval by the Institutional Animal Care and 
Use Committee (IACUC). of the Branch of the Shemya-
kin-Ovchinnikov Institute of Bioorganic Chemistry of the 
Russian Academy of Sciences. The adult males of CD-1 
(Laboratory Animal Nursery of BIBCh RAS, Pushchino, 
Russia) weighing 20–25 g were used. The animals had been 
previously acclimatized in the laboratory for at least five 
days. The mice were kept at room temperature (23±2 °C) 
with a 12-hour light-dark cycle, with food and water availa-
ble ad libitum. The test substance or carrier was administe-
red intravenously in accordance with the design of the study.

A statistical analysis of the data was carried out using 
the analysis of variance (ANOVA) followed by Tukey’s 
test. The data are presented as an average of ± S.E.

The efficiency study was carried out in tests:

Motor activity test

Spontaneous locomotor activity was recorded for 3 min 
after administration of the investigated substances in a 
computerized device which counted photobeam interrup-
tions (OPTO-VARIMEX (Columbus Instruments, Co-
lumbus, OH, USA) and ATM3 automatic system using 
Auto-Track software version 4.2).

Hot plate test

In the test, a hot plate at a temperature of 55 °C (Colum-
bus Instruments, Columbus, OH, USA) by the reaction of 
jerking and/or licking the hind legs, sensitivity to thermal 
effects was studied.

Hypersensitivity induced by complete Freund’s 
adjuvant

A suspended emulsion, of complete Freund’s adjuvant 
(CFA) and saline solution (1:1), was injected into the 
plantar surface of the left hind leg of mice (20 µl/paw). 
Control mice received 20 µl of saline solution (i.p.). 24 
h after CFA injection, the time of paw withdrawal in res-
ponse to thermal stimulation (53 °C) was recorded.

Method to evaluate visceral pain – writhing test

Experimental groups were administered 0.6% of ace-
tic acid in saline solution (10 ml/kg−1 intraperitoneally 
(i.p.)). After injection, the mice were placed in a transpa-
rent cylinder, and the number of writhes was counted for 
15 minutes.

Methods to assess the effect of polypeptides on body 
temperature

For registration of body temperature a rectal probe 
MLT1404 and PowerLab software (Adinstruments Inc., 
Colorado Springs, CO, USA) were used. When recor-
ding the temperature, the mobility of the animals in boxes 
MLA5018 (ADInstruments Inc., Colorado Springs, Co-
lorado, USA) was limited. Body temperature was recor-
ded for 100 minutes after administration, adaptation – for 
20 minutes.

The experiments were partially carried out using the 
equipment provided by the Center of Shred Facilities of 
IBCh, supported by The Russian Ministry of Education 
and Science, Grant RFMEFI62117X0018).

Results and discussion

A targeted study using knockout mice showed that 
TRPV1 receptor channels play an important role in the 
biological processes of a living organism: perception of 
thermal stimuli, development of inflammation, inflamma-
tory thermal hyperalgesia and thermoregulation (Szallasi 
et al. 2007).
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In Vivo effects of APHC1-3 and A13 in pain models

There was an in vivo study conducted to evaluate the phar-
macological effects of polypeptide modulators APHC1, 
APHC2, APHC3, and A13. At the beginning of the study, 
the possibility of the studied polypeptides influencing the 
central nervous system was excluded. The evaluation was 
carried out in the motor activity test, since compounds 
capable of reducing motor activity can distort the results 
of behavioral tests used to test pharmacological effects, 
especially in pain tests. One one dosage of polypeptides, 
0.1 mg/kg, was used, which was close to the effective 
dose of the polypeptides studied in further experiments 
in vivo. There was no change in motor activity for any of 
the polypeptides at a dose of 0.1 mg/kg. The tests revea-
led comparable results in terms of distance traveled and 
points. Thus, the results of the efficacy of the studied po-
lypeptides in pain tests will not be the result of impaired 
motor activity or sedative effect.

Hot plate test

The hot plate test is the easiest for inhibitors of TRPV1 
because TRPV1 plays an important role in the perception 
of exogenous temperature stimuli. The dose-effect of the 
studied polypeptides on changes in behavioral reactions 
associated with analgesic action was estimated (Fig. 1).

The studied APCH 1-3 substances significantly in-
creased the time spent on a thermostated surface (Fig. 1), 
at a dose of 0.1 mg/kg. A further increase in the dose to 
1 mg/kg showed no development of analgesic effect, ex-
cept of APCH 3 which increased the analgesic effect, but 
with an increase in the dose to 10 mg/kg decreased to the 
control group. A13 at a dose of 0.01 mg/kg showed anal-
gesic effect; however, a further increase in the dose had 
no effect on the development of analgesic effect, and was 
comparable with the control group.

The results showed that the investigated polypeptides 
exhibit a dome-shaped dose-response relationship. This 
effect is typical for substances whose action involves 
peptidergic mechanisms (McNamara et al. 2005, Wu et 
al. 2010). Thus, a further increase in the dose will cause 
no increase in the biological effect of the studied sub-
stances.

Previously, it was shown that the knockout animals ex-
hibit analgesic activity in the hot plate test by the TRPV1 
gene (Caterina et al. 2000). The results of the study of 
analgesic activity of polypeptides APHC1-3 and A13 in 
the hot plate test well coincide with the literature data and 
indicate the development of analgesic activity through re-
ceptors – TRPV1. The control in the study of analgesic 
activity was the homologue of polypeptides APHC1-3, 
Aprotinin, the most powerful inhibitor of serine proteas-
es. Aprotinin showed comparable results of analgesic 
activity with the control group (not shown) at doses of 
0.1 and 1 mg/kg. Thus, the analgesic activity of the in-
vestigated polypeptides is not the result of the ability to 
partially inhibit serine proteases, but the modulation of 
TRPV1 channels.

CFA-induced hypersensitivity

CFA-induced thermal hyperalgesia depends on the activa-
tion of TRPV1; this was shown in the TRPV1-knockout 
mice and using TRPV1antagonists (Davis et al. 2000). 
CFA-induced thermal hyperalgesia is a complex process 
in which various inflammatory mechanisms reduce the 
temperature threshold through TRPV1 and affect thermal 
sensitivity (Jara-Oseguera et al. 2008). In the mice, which 
had been administered CFA, thermal hyperalgesia was 
observed, which was manifested by a decreased time of 
the paw withdrawal in response to thermal effects. To stu-
dy analgesic activity, the studied polypeptides were tested 
in the CFA test (Fig. 2).

All the investigated polypeptides showed a significant 
increase in the presence on the thermostated surface from 
the control group. At a dose of 0.01 mg/kg, there is a com-
parable activity of the studied polypeptides APHC1-3, 
~21%, and A13 to ~35% relative to the control, and they 
are significantly different from the “parent” polypeptides 
APHC1 and 3. A further increase in the dose to 0.1 mg/
kg showed that APHC2 and 3 did not increase their ac-
tivity and remained at the same level ~22% relative to 

Figure 1. Time (sec) of the first reaction in the hot plate test 
after administration of polypeptides APHC1, 2, 3 and A13 in 
the hot plate test (n = 9 for each group). Note: * - The results 
are presented as the mean ± s.e.; * -p<0.05 versus saline group 
(ANOVA followed by Tukey’s test).

Figure 2. Time (sec) of the first reaction to CFA-induced hyper-
sensitivity after administration of polypeptides APHC1, 2, 3 and 
A13 in the hot plate test (n = 9 for each group). Note: * - The 
results are presented as the mean ± s.e.; * - p < 0.05 versus saline 
group (ANOVA followed by Tukey’s test).
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the control. APHC1 and A13 did not differ significantly 
from each other and increased their activity to ~56% and 
~65% relative to the control. At a dose of 1 mg/kg, all the 
studied polypeptides lost their pharmacological activity, 
polypeptides APHC2 and 3 did not differ significantly 
from the control, APHC1 and A13 reduced their activity 
by ~30% relative to the dose of 0.1 mg/kg. Hybrid poly-
peptide A13, consisting of APHC1 and APHC3, showed 
the similar activity of APHC3.

Method to evaluate visceral pain – writhing test (Ace-
tic Acid-Induced Writhing)

Activation of TRPV1 can be triggered by low pH values. 
Intraperitoneal administration of acetic acid activates 
TRPV1 receptors, causing specific behavior (writhes) of 
the experimental animals, which is characterized as vis-
ceral pain (Ikeda et al. 2001, Le Bars et al. 2001, Tang et 
al. 2007). According to the results of the study in hot plate 
and CFA-induced hypersensitivity tests, further study of 
pharmacological activity was carried out at a dose of 0.1 
mg/kg. The experimental animals were administered the 
investigated polypeptides 15 minutes before the injection 
of acetic acid. Polypeptides АРНС1 and АРНС2 showed 
a significant decrease in writhes, by ~26 and ~27% rela-
tive to the control group. АРНС3 and A13 reduced the 
number of writhes significantly more (by ~50 and ~67% 
relative to the control group) and significantly differed 
from АРНС1 and АРНС2. Conventional molecules that 
inhibit (Tang et al. 2007) and activate (Lehto et al. 2008) 
pH-induced TRPV1 currents exhibit similar effects in in 
vivo experiments. They significantly reduce the number 
of writhes after the introduction of acetic acid. These data 
were confirmed by the results of the current study, APHC3 
and A13 significantly reduced the number of writhes.

Methods to assess the effect of polypeptides on body 
temperature

TRPV1 is involved in thermoregulation, and almost all its 
known agonists and antagonists change core body tempe-
rature (Garami et al. 2010, Romanovsky et al. 2009). Hy-
perthermia is a critical side effect of TRPV1 antagonists, 
so the effect of polypeptides on body temperature was 
evaluated. As a control group, the antagonist of TRPV1, 
AMG9810 (30 mg/kg) and Aprotinin (0.1 mg/kg), was 
used, which is an inhibitor of serine proteases and acts 
as a homologue of the studied substances. Introduction of 
saline solution, which was used as solvent of AMG9810 
(10% DMSO in normal saline), did not change the body 
temperature of the experimental animals. The introducti-
on of AMG9810 (as the main antagonist of TRPV1) con-
tributed to an increase in the body temperature of mice by 
1.6 °C, as previously reported (Gavva et al. 2007). Serine 
proteinase inhibitor, polypeptide Aprotinin, caused an in-
crease in body temperature (0.4–0.5 °C), which was not 
significantly different from the control group. APHC1 and 
3 caused a decrease in body temperature of the experi-

mental animals. APHC1 resulted in a more rapid effect 
of lowering the temperature by -0.8 °C within 30 minu-
tes after injection. The reduced temperature remained 
throughout the period of observation of the animals in 
the experiment. APHC3 caused a slow decrease in body 
temperature, reaching -0.6 °C from the 60th minute after 
administration. The results obtained were not significant-
ly different from the control group. APHC2 did not cause 
changes in body temperature. A13 at a dose of 0.1 mg/kg 
increased body temperature by 2.3±0.2 °C from the 15th 
minute after administration. A hyperthermal response to 
A13 administration was observed during 90 min of tem-
perature registration (not shown) and was similar to the 
effect from low-molecular antagonist AMG9810. Antago-
nists potentiating pH-induced activation of TRPV1 either 
reduce or do not change body temperature (Lehto et al. 
2008, Romanovsky et al. 2009).

Antagonists interacting with the intracellular TRPV1 
channel exhibit a hyperthermal effect if they are able to 
inhibit pH-induced TRPV1 currents (Honore et al. 2009, 
Lehto et al. 2008). The hyperthermal reaction that occurs 
when an antagonist is administered is that the antagonist’s 
ability to inhibit the permanently activated abdominal 
channels of TRPV1 provokes a cold defence response 
(Gavva et al. 2007, Steiner et al. 2007). The factors main-
taining the channels in the activated state have not yet 
been identified. PH modulation was proposed as one of 
the most likely factors (Garami et al. 2010).

Thus, the investigated polypeptide A13 obviously in-
hibits TRPV1 and affects body temperature as a classic 
antagonist of this receptor. Consequently, the antagonistic 
properties of A13 became different from the properties of 
both initial analgesic peptides.

Conclusion

The results of the study showed that partial inhibition of 
TRPV1 in vivo may be more useful than its complete in-
hibition. АРНС1-3 polypeptides showed significant an-
tinociceptive and analgesic activity in vivo at low doses 
(0.01–0.1 mg/kg). Despite the partial inhibition of TRPV1, 
polypeptides APHC1-3 significantly reduced pain response 
both in the tests directly related to the functions of TRPV1 
(hot plate, CFA-induced hypersensitivity), and in general 
models of pain (acetic acid). Unlike most TRPV1 antago-
nists provoking severe hyperthermia in vivo, APHC1-3 
caused a moderate decrease in body temperature. Therefo-
re, polypeptides APHC1-3 can be attributed to a new class 
of modulators of TRPV1, which exhibit pronounced anal-
gesic properties without hyperthermia.

A single substitution of the aspartic acid residue of the 
polypeptide АРНС1 at position 23, by transferring one 
asparagine residue from the cognate peptide АРНС3 led 
to a significant change in the properties of the molecule. 
The new polypeptide A13 did not alter the thermal sensi-
tivity of mice, but showed the most significant analgesic 
activity in the acid-induced pain model, unlike АРНС1. 
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While АРНС1 and 3 peptides reduced the body tempera-
ture of the experimental animals, showing the properties 
of incomplete antagonists of TRPV1. Hybrid A13 raised 
the body temperature of mice, like most non-peptide an-
tagonists of TRPV1, blocking all types of activation of 
this receptor. Thus, the analgesic properties of АРНС1 

were enhanced by transferring a single residue from the 
cognate peptide АРНС3. Replacement of a single ami-
no acid (D23 → N23) in АРНС1 resulted in analgesic 
properties inherent in АРНС3, and the emergence of a 
new hyperthermic actions, uncharacteristic for both of the 
original polypeptides.
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