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Abstract
Introduction: Valproic acid (VA) is carboxylic acid with a branched chain, which is used as an antiepileptic drug. 

Valproic acid influence on cells in vivo: VA, which is an antiepileptic drug, is also a teratogen, which causes defects 
of a neural tube and an axial skeleton, although the mechanisms are not yet fully clear. 

Valproic acid influence on mesenchymal stem cells (MSC) in vitro: It is shown that valproic acid reduces the intra-
cellular level of oxygen active forms. 

Valproic acid effect on tumor cells: VA inhibits tumor growth through several mechanisms, including the cell cycle 
stop, differentiation induction and inhibition of growth of tumor vessels.

Valproic acid influence on enzymes: It affects mainly GSK-3.

Valproic acid influence on animals’ cells: It is shown that VA can significantly improve an ability to develop in vitro 
and improve nuclear reprogramming of embryos.

Erythropoietin (EPO): Is an hypoxia-induced hormone and a cytokine, which is necessary for normal erythropoiesis. 
EPO is widely used in in vitro experiments.

Conclusion: Thus, the influence of VA and EPO on cells can be used in cell technologies.
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Introduction
Currently one of the most important tasks of medicine is 
using biomedical cellular products (BMCP) and under-
standing mechanisms of how cell therapy works. It is 
done in order to develop new efficient methods for tre-
ating many diseases using cells and the products of their 
life activity. Cells and their metabolites are powerful 
agents, but it is not enough for their being used in therapy. 
To improve the efficiency of cell use, including mesenc-
hymal stem cells (MSC), it is necessary to search for their 
capacity modifiers in vitro.

Glycogen synthase kinase (GSK-3), in addition to ta-
king part in glucose metabolism, is known to be involved 
in several diseases, including type II diabetes, Alzhei-
mer’s disease, inflammation, cancer, schizophrenia and 
bipolar disorder. It is also shown that GSK-3 regulates 
immune and migratory cellular processes – it participates 
in several signalling pathways of an innate immune res-
ponse, including interleukin secretion (Jope et al. 2007). 
GSK-3 inhibition can have a therapeutic effect on certain 
types of cancer, for example, on human pancreatic cancer 
(Marchand et al. 2012).

Valproic acid (2-propylvaleric acid, VA) is carboxylic 
acid with a branched chain, which is a glycogen syntha-
se kinase 3 (GSK-3) inhibitor. It is used as an antiepi-
leptic drug. Valproates when dissociated into ions block 
the sodium channel conduction like diphenine and block 
calcium channels like ethosuximide;, and activate potas-
sium channels. They also promote GABA accumulation 
in brain synapses. It is shown that cell migration improves 
when adding valproic acid and lithium to the culture.

Erythropoietin (EPO) is a hypoxia-induced hormone 
and cytokine, which is necessary for normal erythropoie-
sis. EPO interaction with its receptor leads to the activa-
tion of various intracellular pathways (IP3, Ras/MAPK, 
NF-kв), a change of the intracellular calcium level, a re-
duction in apoptosis and an increase in cell survivability. 
The maximum number of receptors to EPO is on erythroid 
cells. Megakaryocytes, skeletal myoblasts, neurocytes, 
microglia, astrocytes, endothelial cells, cardiomyocytes, 
ovaries and testicles also have receptors. Therefore, EPO 
fulfils several functions other than a hemopoietic one.

Valproic acid (VA) is fatty acid with a branched chain, 
a histone deacetylase inhibitor (Salerno et al. 2016), 
which improves the efficiency of somatic murine embryo-
nic fibroblasts reprogramming (approximately 100-fold), 
activating pluripotency genes and repressing lineage dif-
ferentiation genes (Luo et al. 2013). VA intensifies the 
induction of induced pluripotent stem cells (IPSC) from 
human bone marrow cells. In this case, cell proliferation 
at the early stages of the reprogramming improved by fa-
cilitating cell transition from G2 into М-phase (Chen et 
al. 2016). Thus, VA is a part of the compound, including 
low-molecular compositions, used for the production of 
induced pluripotent cells. VA also promotes IPSC diffe-
rentiation into hepatocytes (Kondo et al. 2014, Raut and 
Khanna 2016).

Valproic acid influence on cells in 
vivo

VA, which is an antiepileptic drug, is also a teratogen, 
which causes defects of a neural tube and an axial skele-
ton, although the mechanisms are not yet fully clear. It is 
assumed that VA works through the retinoic acid receptor 
(Li and Marikawa 2016).

The main effect of VA on osseous metabolism consists 
in the decreased proliferation of osteoblasts, a change in 
collagen synthesis and the induction of vitamin D cata-
bolism. In addition to these direct effects of VA in bones, 
there are indirect effects influencing other endocrine or-
gans and promoting VA-induced bone mass loss. The 
chronic injection of VA affects the hypothalamic-pitui-
tary-gonadal axis, predominantly in men (Verrotti et al. 
2009). In women, long-term treatment with VA causes 
polycystic ovarian syndrome, menstrual disorders, hy-
perandrogenism (Pitetzis et al. 2017). By means of car-
nitine metabolism, VA indirectly affects the spermatozoa 
mobility (Roste et al. 2005). VA-induced carnitine deficit, 
especially in newborns, also has an indirect negative ef-
fect on the bone tissue metabolism (Rauchenzauner et al. 
2009, Um et al. 2017). Therapy with VA also influences 
thyroid gland (Lossius 2009).

Valproic acid influence on 
mesenchymal stem cells (MSCs) in 
vitro

MSCs demonstrate a high potential for the treatment of 
several human diseases; but efficiency of MSC transplan-
tation was hampered by the relatively low migratory abi-
lity of these cells towards disease areas. It is a fact that 
cell migration improves when adding VA and lithium. 
Short-term (for 3 hours) exposure of a relatively high VA 
concentration (2.5 mM) on MSCs noticeably increased 
the level of protein transcription and synthesis of CXC4 
chemokine receptor (CXCR4). At the same time, histone 
deacetylase (HDAC) was inhibited, including HDAC1 
isoform (Linares et al. 2016, Tsai et al. 2010). Valproic 
acid improves migration of MSCs from umbilical cord 
blood by increasing expression of CXCR4, CXCR7 and 
MMP-2 (Marquez-Curtis et al. 2014).

It is shown that stem cells from human amniotic fluid 
in the first trimester of pregnancy can be fully reprogram-
med to the pluripotency in the culture on Matrigel in the 
human embryonic stem cells (hESC) medium with the ad-
dition of histone deacetylase inhibitor (HDACi) and VA 
to the medium (Moschidou et al. 2012).

VA promotes transformation of hUC-MSC cells into 
hepatocytes by increasing the expression of endodermal 
genes, including CXCR4, SOX17, FOXA1, FOXA2, 
GSC, c-MET, EOMES and HNF-1β, by activating AKT 
and ERK (An et al. 2014).
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It is shown that preliminary treatment of human bone 
marrow cells with VA after their incubation with neuronal 
inductive media efficiently promotes MSC differentiation 
in the neuronal direction (Almutawaa et al 2014, Jeong et 
al. 2013). After treating the placenta MSCs with VA, there 
was an increase in the number of axons and markers spe-
cific for neural lineages compared with cells, grown only 
in the differentiation medium (Talwadekar et al. 2017). 
At the same time, the neuroprotective effect of VA is not 
proven. In the experiments, rat’s embryonic motor neu-
rons cultivated on a feeder layer consisting of Schwann 
cells were used (Ragancokova et al. 2009).

VA protects human bone mesenchymal stromal cells 
(hBM-MSCs) from oxidative stress and improves their 
migratory ability by increasing trophic factor secretion. 
This suggests that VA can be used for improving the stem 
cell functioning, though the molecular mechanisms are 
not known yet. It is assumed that valproic acid reduces 
the intracellular level of oxygen active forms by means of 
modulation of KRIT1 protein family, including FoxO1, 
SOD2 and cyclin D1 (Jung et al. 2015).

Valproic acid effect on tumor cells

It is also known that VA inhibits tumor growth through 
several mechanisms, including the cell cycle stop, dif-
ferentiation induction and inhibition of growth of tumor 
vessels (Sidana et al. 2012). VA has a cytotoxic effect 
on neuroendocrine tumor cells (NETs) of the intestinal 
or pancreatic origin. There are several mechanisms by 
which VA kills NET cells, which suggests the possibility 
of combination therapy. In this study, VA was found to 
induce dose-dependent inhibition of NET cells growth in 
vitro, which is mainly connected with the apoptosis ac-
tivation. VA induced the main transcriptional response 
by changing expression of 16-19% of protein-encoding 
genes in NET cell lines. For example, TGF-β1, FOXO3, 
p53 signal transmission was activated, and MYC signal 
transmission was inhibited (Arvidsson et al. 2016).

The experiment with the transplantation of glioblas-
toma multiforme, which had been treated with VA cells 
three times, demonstrated that animals’ survivability in-
creased unlike the control (transplantation of untreated 
tumor cells to mice) (Hosein et al. 2015). Using PCR, 
it was shown that a combination of VA and cytarabine 
significantly increased Bax gene expression, suppressed 
leukemia cell proliferation and led to pathological cells 
apoptosis (Liu et al. 2016). Treatment with using VA also 
leads to the cell cycle stop in G1-phase by decreasing cy-
clin D1 (Fortunati et al. 2008, Ma et al. 2007) and can 
induce autophagy in certain types of cancer, such as pros-
tate cancer and some kinds of lymphoma, by activating 
adenosine monophosphate kinase (AMPK) and inhibiting 
mTOR (Ji et al. 2005, Xia et al. 2016, Zhang et al. 2017).

The study showed that VA inhibits migration of hormo-
ne-sensitive breast cancer (Travaglini et al. 2009). VA is an 
efficient drug, which blocks tumor-stromal paracrine inter-

actions and potentiates the doxorubicin effect through inhi-
biting the NF-kB transcription factor (Barneh et al. 2018). 
The anti-tumour activity of the combination of MSCs from 
bone marrow and VA is mediated by the increased cell 
apoptosis in glioma (Ryu et al. 2012). VA induces death of 
breast cancer cells (Aztopal et al. 2018). Some scientists 
suppose involvement of oxygen active forms in a VA toxi-
city mechanism and, probably, reactive metabolites as the 
main cause of cytotoxicity in the case of acetaminophen in 
the in vitro model (Tabatabaei and Abbot 1999).

VA in theraupeutic doses for epilepsy in the experi-
ment causes cell death in primary CD138-positive mye-
loma cells, as well as in myeloma cell lines, but not in 
CD138-negative bone marrow cells. VA suppresses oste-
oclastogenesis, as well as the osteoclast-mediated growth 
of myeloma cells. VA also inhibited the vessels formation, 
intensified by co-culturing myeloma cells and osteoclasts 
with thalidomide. In addition, VA induces caspase-depen-
dent and caspase-independent death of myeloma cells and 
increases the antimyeloma effect of melphalan and dexa-
methasone. VA may have the multi-factor antimyeloma 
effect and can serve as a safe adjuvant for being included 
into antimyeloma chemotherapy (Kitazoe et al. 2009).

However, VA concentration and incubation time should 
be carefully controlled to minimize any harmful effects on 
the culture. It was shown that with acid concentration of 
8 mM, cell morphology changes, and their proliferative 
activity decreases (Lee et al. 2018).

A high dose of VA (~10 mM) by activating the p21 
CIP1/WAF1 transcription stops a cell at the G2/M pha-
se of the cell cycle (Lee et al. 2009). It is important to 
note that the addition of VA and bioactive lipid sphingo-
sine-1-phosphate (S1P) to MSC also intensifies several 
important cellular features of MSC, such as self-renewal 
and migratory activity. It is important for the development 
of positive results of cell therapy (Lim et al. 2017).

Studies of epithelial differentiation of human adipose me-
senchymal stem cells by inhibiting glycogen synthase kina-
se 3 (GSK-3) and transforming growth factor beta (TGFb) 
showed positive results. In the study of ADSCs, at the se-
cond passage, cells were treated with CHIR99021 (GSK-
3 inhibitor), E-616452 (TGFb1 kinase inhibitor), A-83-01 
(TGFb1 receptor inhibitor), and VA (histone deacetylase 
inhibitor) (Setiawan et al. 2017). It is also shown that induc-
tion of the MSC differentiation into hepatocytes is possible 
using only GSK3 inhibitor (Huang et al. 2017).

Valproates reduce the concentration of two key osseous 
peptides, procollagen I and osteonectin, both in skin fi-
broblasts and in cultivated osteoblast-like cells (Wilson 
et al. 2016).

Valproic acid influence on enzymes

GSK-3 is a serine/threonine protein kinase that mediates 
the addition of phosphate molecules onto serine and thre-
onine amino acid residues. For the first time, GSK-3 was 
discovered in 1980 as a regulating kinase for glycogen 
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synthase (Embi et al. 1980). GSK-3 is identified as a kina-
se for more than forty different proteins in different meta-
bolic pathways (Jope and Johnson 2004). In mammalians, 
GSK-3 is encoded by two genes – GSK-3 alpha (GSK3A) 
and GSK-3 beta (GSK3B). GSK-3 is involved in sever-
al diseases, including several diseases, including type 
II diabetes, Alzheimer’s disease, inflammation, cancer, 
schizophrenia and bipolar disorder. The enzyme partici-
pates in glucose metabolism including phosphorylation of 
IRS1 receptor (Liberman and Eldar-Finkelman 2005) and 
gluconeogenic enzymes –phosphoenolpyruvate carboxy-
kinase and glucose-6-phosphatase (Lochhead et al. 2001). 
But these interactions were not corroborated, because the-
se pathways can be suppressed without GSK-3 regulation 
(Rayasam et al. 2009).

It is also shown that GSK-3 regulates immune and mi-
gratory cellular processes (it participates in several signal-
ling pathways taking part in an innate immune response, 
including interleukin secretion). GSK-3β inactivation by 
different protein kinases also influences an adaptive im-
mune response inducing proliferation and production of 
cytokines in naive and CD4+ memory Т-cells. It is shown 
that GSK-3 inhibition plays controversial roles in cell mi-
gration and inflammatory reactions. Because local inhi-
bition promotes mobility, while global GSK-3 inhibition 
suppresses cell migration (Jope et al. 2007, Wang et al. 
2011). GSK-3β signal transmission promotes migration 
of hemopoietic stem and progenitor cells (HSPC) through 
regulating the microtubule rearrangement ,including CX-
CL12-induced polarization and actin polymerization (La-
pid et al. 2013).

GSK-3 is also connected with the cell proliferation and 
apoptosis pathways. It was shown that GSK-3 phospho-
rylates β-catenin, promoting its degradation (Mills et al. 
2011). Thus, GSK-3 is a part of the β-catenin/Wnt path-
way, which signals to the cell about division and proli-
feration. GSK-3 participates in several apoptotic sygnal 
pathways through the phosphorylation of transcriptio-
nal factors, which regulate apoptosis (Jope and Johnson 
2004). GSK-3 can promote apoptosis through activating 
р53 proapoptotic factor (Watcharasit et al. 2002) and in-
activating factors stimulating the survival by means of 
their phosphorylation (Grimes and Jope 2001).

However, the role of GSK-3 in the apoptosis regulation 
is controversial, because some studies showed that mice 
with GSK-3β knockout were oversensitized to apoptosis 
and die at the embryonic stage. Other studies showed that 
GSK-3 overexpressing can induce apoptosis (Kotliarova 
et al. 2008). In general, GSK-3 stimulates and inhibits 
apoptosis, and this regulation varies depending on a con-
crete molecular and cellular context (Jacobs et al. 2012).

It is currently shown that lithium, which is used to treat 
bipolar disorder, acts as the mood stabilizer through se-
lective inhibition of kinase. GSK-3 is thought to directly 
stimulate amyloid production , which leads to the neuro-
fibrillary deposition in Alzheimer’s disease (Jope et al. 
2007, Jope and Johnson 2004). Consequently, GSK-3 in-
hibitors can have a positive theraupeutic effect on patients 

with Alzheimer’s disease (Hu et al. 2009). Similarly, tar-
geted inhibition of GSK-3 can have a theraupeutic effect 
on certain cancers. Although, as shown, GSK-3 promotes 
apoptosis in some cases; it is also reportedly a key factor in 
tumorigenesis in some cancers (Wang et al. 2008). GSK-3 
inhibitors induces apoptosis in gliomas and pancreas can-
cer cells (Kotliarova et al. 2008, Marchand et al. 2012). 

Scientists demonstrated that GSK3 inhibition causes 
JNK-cJUN-dependent apoptosis in human pancreas can-
cer cells. However, a full-fledged picture of the functions 
regulated by GSK-3 is still not clear. In this case, GSK-3 
inhibition promotes increased activity of autophagy/lyso-
somic networks (Marchand et al. 2015).

Studies showed that injection of GSK-3 competitive 
inhibitors can increase glucose tolerance in diabetic mice 
(Jope et al. 2007). GSK-3 inhibitors can also have a the-
raupeutic effect after an acute ischaemic stroke (Wang et 
al. 2016).

It is shown that GSK-3 α/β activity increases in fetal 
cells in the case of premature birth. The pharmacological 
blockade of kinase significantly reduces pro-inflammato-
ry mediators in the fetal tissues and myometrium, provi-
ding a possible target for the premature birth treatment 
(Lim and Lappas 2015).

It is also shown that GSK-3 gene deletion significant-
ly increases precursor cell proliferation and at the same 
time suppresses neuron differentiation. In the Wnt cano-
nical pathway, as mentioned above, GSK-3 inhibition is 
crucial to the β-catenin stabilization and transfer into the 
nucleus for stimulating T-cell factor (TCF), which leads 
to the subsequent activation of T-cell factor 4 (TCF4)-de-
pendent gene transcription. Although the mechanism of 
regulation is not clear, GSK-3 is a known PI3K signal 
pathway effector (phosphatidyl inositol-3-kinase), which 
gives an explanation of the FGF-signaling disorders in 
the brain, when Gsk-3 genes are knocked out (Kim et al. 
2009). Notch protein was stabilized by the GSK-3-medi-
ated phosphorylation, while in another study the Notch 
protein transcription was intensified by the GSK-3 inhibi-
tion (Hur and Zhou 2010).

The treatment of human dermal papilla cells with VA 
led to an increased β-catenin level andGSK-3β inhibition 
through phosphorylation. In addition, the treatment with 
this acid accelerated induction of anagenic hairs (in an ac-
tive growth phase) in C57BL/6 female mice at the age of 
7 weeks. That is, VA intensifies the human hair growth by 
means of increased β-catenin , and, thus, can serve as an 
alternative therapeutic option for alopecia (Jo et al. 2013).

As a histone deacetylase (HDAC) inhibitor, VA in-
fluences the pericyte proliferation, their viability, migra-
tion and differentiation. The research results show that 
HDAC inhibition by VA in vitro causes inhibition of pe-
ricyte proliferation and migration without an influence 
on cell viability (Karén et al. 2011). Treating cells with 
HDAC inhibitors leads to an increase in the total number 
of hemopoietic cells compared with a cytokine-stimulated 
sample. In doing so, cells start to express genes associated 
with leukaemia (Lam et al. 2017).
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VA promotes the osteoblast differentiation in the pre-
sence of type 1 collagen in vitro (Hatakeyama et al. 2011). 
Trichostatin A (TSA), which is an HDAC inhibitor, acce-
lerates matrix mineralization and expression of osteoblast 
genes, type 1 collagen, osteopontin, bone sialoprotein and 
osteocalcin in MC3T3-E1 cells (osteoblast culture). Con-
centrations of HDAC inhibitors, which caused H3 histo-
ne hyperacetylation, promote a short-term increase of the 
osteoblast proliferation and viability, but do not change 
cell cycle profiles (Schroeder and Westendorf 2005). It is 
shown that HDAC inhibitors regulate expression of ge-
nes promoting the differentiation and maturationof osteo-
blasts (Schroeder et al. 2007).

HDAC inhibitors – trichostatin A and sodium butyrate 
– powerfully inhibit the cartilage degradation in an ex-
plant in vitro. These compounds decrease a level of colla-
genolytic enzymes in the culture and also inactivate these 
enzymes.. In the cell culture, these effects are explained 
by an ability of HDAC inhibitors to block induction of the 
key metalloproteinases (for example, MMP-1 and MMP-
13) (Young et al. 2005).

Therefore, HDAC inhibitors are a potential new class 
of osseous and cartilaginous anabolic agents, which can 
be useful in the treatment of diseases associated with the 
bone mass loss, such as osteoporosis and cancer.

Valproic acid influence on animals’ 
cells

It is shown that VA can significantly improve an ability 
to develop in vitro (frequency of blastocyst apoptosis de-
creases) and improve nuclear reprogramming of the cattle 
embryos (Xu et al. 2012).

VA decreases the inhibiting effect of glucocorticoids 
on BM-MSC proliferation and osteogenesis through in-
hibiting apoptosis and increasing expression of proteins 
associated with osteogenesis, which can promote preven-
tion of glucocorticoid-induced necrosis of femoral head 
in rats (Zhou et al. 2018).

Erythropoietin (EPO)

Erythropoietin is a cytokine required for normal erythro-
poiesis. Reduction of the oxygen concentration in tissues 
is accompanied by an increased content of the EPO and 
its receptor (EpoR). EPO is approved by FDA (Food and 
Drag Administration) for the anaemia treatment, but it has 
prospects in the treatment of Alzheimer’s disease, Parkin-
son’s disease, immune system dysfunction, neuroprotecti-
on, cardiovascular diseases (acute myocardial infarction, 
ischemia/reperfusion, ischemic and uremic cardiomyopa-
thy, chronic heart failure) therapy, spinal cord injuries, 
brain swelling, shock, infection, diseases of kidneys, 
lungs, eyes, gastrointestinal tract, metabolism, and fertili-
ty disorders (Mangileva 2014).

EPO does not only stimulate erythropoiesis in response 
to hypoxia, but it is also a cytokine with an antiapoptotic 
activity, which has neuroprotective and cardioprotective 
effects. It is involved in angiogenesis, neurogenesis and 
immune response (Lombardero et al. 2011;Maiese et al. 
2008a). With its pronounced cytoprotective action, EPO 
increases the cell survival rate in the case of ischemia, re-
perfusion, infections, and a free radical affect. It decreases 
cytokine (IL-6, TNF-β) production by endothelial cells 
and the microglia activity. EPO supports communication 
and function of endothelial cells, stimulates angiogenesis, 
influencing the endothelial cell proliferation and migra-
tion, and also the release of their precursors from bone 
marrow. EPO stimulates angiogenesis in the myocardi-
um, uterus, brain, and kidneys. Its stimulating effect on 
the vessel growth is comparable with the effect of VEGF 
(Mangileva 2014).

It is shown that an EPO neuroprotective activity is ob-
served as early as in the developing brain; besides that, 
induction of EPO and its receptor by hypoxia can promo-
te cell survival in the brain (Yu et al. 2002). It is shown 
in vivo that EPO is neuroprotective for animal models of 
brain ischemia (hypoxia induces production of EPO and 
its receptor) (Chen et al. 2006). Hypoxia promotes diffe-
rentiation of embryonic neural progenitor cells with EPO 
participating in differentiation, while the number of EPO 
receptors does not increase (Giese et al. 2010). In a deve-
loping human embryo, EpoR expression is first detected 
as early as within 7-8 weeks in neurons and astrocytes of 
the spine cord and brain (Ostrowski and Heinrich 2018). 
Mice with this receptor knock-out demonstrate a decre-
ase in the total number of neuronal cells and the reduced 
neurogenesis (Tsai 2006), as well as of heart defects ac-
companied by a decreased number of cardiomyocytes and 
endothelial cells (Ostrowski and Heinrich 2018). EPO has 
a powerful potential for preventing Schwann cells apop-
tosis; it may be connected with reducing oxidative stress 
and regulating protein factors associated with apoptosis 
(Zhang and Shi 2017). It is assumed that signals trans-
mission through EpoR plays a crucial role in the normal 
development of the brain and other organs.

The transduction of EPO gene in MSC induces secreti-
on of the hormone and various trophic factors, which can 
have a neuroprotective effect both in in vitro and in vivo 
animal models of ischemic stroke (Cho et al. 2010).

In vivo, EPO also stimulates neovascularization and 
mobilizes endothelial progenitor cells from bone marrow 
(Chen et al. 2006), increasing producing of vasodilator 
factor NO by them (Chin et al. 2000).

In addition to its regulatory function in the vertebrates’ 
erythropoiesis, EPO promotes useful functions in various 
non-haemopoietic tissues including the nervous system. 
EPO protects cells from apoptosis, reduces inflammatory 
reactions and maintains function recovery through sti-
mulating the cells migration and differentiation. An EPO 
function is also widely expressed in the nervous system. 
EPO promotes myelination through increasing the proli-
feration of oligodendrocytes which survived after ische-
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mia. In the brain, EPO and EpoR mRNAs are widely 
expressed throughout the whole development of neurons, 
astrocytes and endothelial cells (Cho et al. 2012).

In vitro, EPO has a protective effect in hyperglyce-
mia, when it maintains Wnt1 protein expression requi-
red for proliferation and survival of neurons, cardio-
myocytes, erythrocytes, endothelial and adipose cells; it 
prevents DNA degradation, and maintains mitochondrial 
membrane potential. Its cytoprotective effect is realized 
through NF-kB, which attaches itself to DNA, activa-
ting transcription of genes inhibiting apoptosis proteins 
(Baksheev and Kolomoec 2008, Maiese 2009, Raddino 
et al. 2008).

However, along with a positive effect, EPO has se-
veral side effects preventing the hormone introduction in 
clinical practice. It can reduce apoptosis of cancer cells, 
improve tumor vascularization, promote metastasis pro-
gression; increase a risk of thrombosis (including the 
development of acute myocardial infarction) and throm-
boembolisms through increasing the blood viscosity and 
activating platelets and increase ABP level as a result of 
activating humoral and hemodynamic mechanisms (Lom-
bardero et al. 2011, Maiese et al. 2008b)

EPO use can be extended by means of using its non-ery-
thropoietic effects, whose presence is adequately demon-
strated in the experiment, but in order to introduce it into 
routine clinical practice, what is needed is drugs with mi-
nimum number of side effects, whicih are currently being 
worked on by many scientists(Maiese et al. 2008a).

It is shown that an EPO injection suppresses apoptosis 
of MSCs and increases their survivability when transplan-
ted into a heart after infarction. EPO reduces apoptosis in-
duced by Н2О2 in the culture of human adipose tissue-de-
rived MSCs (hAT-MSC) (Ercan et al. 2014).

MSCs transplantation with simultaneous EPO infusion 
can improve cardiac function acting through PI3-K/Akt 
pathway (Zhang et al. 2006). EPO increases MSC sur-
vivability in the case of their combined injection in the 
Alzheimer’s disease treatment (Khairallah et al. 2014).

EPO stimulates MSC proliferation from adipose tissue, 
but it does not influence their migratory activity (Bonda-
renko et al. 2016). EPO can enhance proliferation (Zeng 
et al. 2008) and differentiation of MSCs obtained from 
bone marrow (mBM-MSC) but decreases BAS release by 

them (Liu et al. 2012). EPO in combination with G-CSF 
enhances MMP-2 expression in MSC and promotes cell 
migration (Yu et al. 2014).

In one of the experiments, BM-MSCs treated with 
EPO (4 IU/ml) within 24 and 48 hours were studied. Such 
cells express more hepatocytes growth factor (HGF) than 
control cells cultivated in usual conditions. The study 
showed that EPO could induce migration of hemopoietic 
stem cells (HSC) through an HGF-dependent pathway. 
EPO-treated MSCs can be the main source of HGF pro-
duction. Therefore, HGF can be used in the cultivation as 
a factor stimulating migration and as a mobilizing agent 
for HSC (Tari et al. 2017).

MSCs activated by EPO can promote efficient healing 
of diabetic foot ulcers. EPO can reduce inflammatory mi-
croenvironment of diabetic foot ulcers. The mechanism 
involves inhibiting the release of proinflammatory cyto-
kine TNF-α by cells, decreasing monocyte migration into 
the focus of inflammation (Lu et al. 2016).

It is discovered that EPO and bone morphogenetic pro-
tein-2 (BMP-2) cause MSC osteogenic differentiation in 
vitro (Nair et al. 2013).

EPO reduces expansion of human naive CD4+ Т- 
cells after their transplantation into NOD-mice (Cravedi 
et al. 2014). EPO injection in vivo decreased VCAM1 
and Cxcl12 expression in endothelial cells of bone mar-
row (Ito et al. 2017) and mobilized mesenchymal stem 
cells from bone marrow into peripheral blood (Gilevich 
et al. 2017).

Conclusion

Thus, VA and EPO can be used not only as drugs for tre-
ating epilepsy and hemopoiesis disorders, but also in cell 
technologies. These compounds have a variety of useful 
effects on cell cultures, which can be used in combination 
with other chemical compounds.
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