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Abstract
Introduction: The article presents the results of studying the protective properties of recombinant human butyrylcho-
linesterase (rhBChE) in a model of acute anticholinesterase poisoning in mice knocked out for the BChE gene. Balb/c 
inbred mice were also used to demonstrate the important role of BChE.

Materials and methods: In the study, BChE-ko and Balb/c mice were used. An organophosphorus compound (OPC) 
paraoxon was used as a toxic agent causing acute anticholinesterase poisoning. rhBChE was used as an antidote for 
OPC poisoning. To obtain rhBChE, an expression system based on CHO cell lines was chosen. In order to suppress 
BChE in Balb/c mice, a carboxyl esterase blocker cresylbenzodioxaphosphorin oxide (CBDP) was used. Two parame-
ters were used to study the recovery after toxicity modeling: the end time of the animal tremor and the distance covered 
in open-field for 3 minutes.

Results and discussion: The acute poisoning model using the CBDP blocker showed that the sensitivity of Balb/c 
mice increased significantly. The use of rhBChE against the background of CBDP allowed achieving 100% survival of 
animals with the minimum lethal dose of paraoxon. Knockout mice are expected to be more sensitive to the toxin, and 
the use of a biological trap in the form of rhBChE made it possible for 70% of the animals to survive with the minimum 
lethal dose of paraoxon. Besides, the use of rhBChE facilitated reducing the recovery time after OPC poisoning.

Conclusion: The results of the study showed that the use of rhBChE as a protective agent in acute OPC poisoning 
significantly increased the survival of the animals and reduced the clinical manifestations of poisoning.
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Introduction
OPC is widely used both in agriculture and everyday life 
as a means of combating insects, rodents, and weeds. 
Poisoning can be seasonal and massive. The pathways 
of OPC in the human body are absorption by the skin, 
eyes and respiratory tract. Absorption can also take place 
through the gastric tract (self-poisoning). OPC molecules 
are distributed throughout the body from blood elements 
to organs and tissues, including natural depots, physio-
logical targets, and excretory organs (liver and kidneys).

OPC inhibit cholinesterase enzymes, mainly acetylcho-
linesterase, necessary for the destruction of acetylcholine. 
As a result, acetylcholine accumulates, which leads to 
excitation, and subsequently to exhaustion and persistent 
paralysis of cholinergic structures (Masson et al. 2008). 
The main function of acetylcholinesterase (AChE) is the 
hydrolysis of acetylcholine and, as a result, the cessation 
of neurotransmission. When AChE is inhibited, the work 
of the diaphragm and other respiratory muscles, as well as 
the central rhythm generator in the brain stem, is disrupt-
ed, resulting in respiratory failure and death of the body.

Butyrylcholinesterase, also called serum cholinester-
ase or pseudocholinesterase, is abundant in human plas-
ma (3 mg/L) and has a half-life of 12 days (Lockridge 
et al. 2005; Ostergaard et al. 2006). BChE is present in 
almost all body tissues – liver, intestines, pancreas, pla-
centa, heart, in the central and peripheral nervous system, 
etc. (Silver 2005). Serum BChE is synthesized in the liver 
and from there enters the bloodstream. The physiological 
role of BChE is still not fully understood. Unlike AChE, 
BChE does not have a unique physiological function that 
could not be compensated by other enzymes. People with-
out BChE activity are healthy, fertile, and live to old age 
(Manoharan et al. 2007). Experiments on knockout mice 
for the BChE gene also showed that the complete absence 
of BChE activity does not affect the health and fecundity 
of animals (Li et al. 2008; Lockridge et al. 2008). In total, 
in the human and mouse bodies, there is on average 10 
times more BChE than AChE (Ashani and Pistinner 2005; 
Rudakova et al. 2011; Kurdyukov et al. 2012). The high-
est concentrations of BChE were found in the liver, blood 
plasma, skin, lungs, and small intestine, which indicate 
the protective role of the enzyme and its participation in 
the detoxification of xenobiotics that enter the body with 
food and air.

As said above, the physiological function of BChE is 
not fully understood. By hydrolyzing various compounds 
and binding to OPC, BChE performs primarily protective 
functions in the body and also participates in the metabo-
lism of drugs (Saxena et al. 2006; Masson and Lockridge 
2010). There is evidence that BChE also plays a role in 
the development of type 2 diabetes mellitus (Kamal et al. 
2009). BChE is one of the esterases that inactivates the 
appetite-stimulating hormone octanoyl-ghrelin, turning it 
into an inactive form (pure peptide – ghrelin). The role 
of BChE in fat metabolism is confirmed in experiments 
on BChE (-/-) mice that developed obesity when receiv-

ing high-fat feed unlike wild-type animals (Lockridge et 
al. 1987; De Vriese et al. 2005). In (Iwasaki et al. 2007), 
it was shown that the activity of serum BChE correlates 
with an obesity degreeof patients, with the lipid profile of 
blood serum and with adegree of insulin resistance.

Materials and methods

Paraoxon was used as OPC. Paraoxon inhibits cholines-
terase enzymes, mainly acetylcholinesterase (AChE), ne-
cessary for the destruction of acetylcholine (Terekhov et 
al. 2015b). As a result, acetylcholine accumulates, which 
leads to excitation, and subsequently to exhaustion and 
persistent paralysis of cholinergic structures. The functi-
on of AChE is to terminate the action of acetylcholine at 
the joints of various cholinergic nerve endings with their 
effector organs or postsynaptic sites. Organophosphorus 
compounds and carbamates are the most important AChE 
inhibitors; they are often called anticholinesterase inhi-
bitors. In the presence of inhibitors, AChE is gradually 
suppressed and can no longer hydrolyze acetylcholine 
(Terekhov et al. 2015a, Mokrushina et al. 2017; Terek-
hov et al. 2017). As a result, acetylcholine does not form 
choline and acetic acid, which causes the accumulation of 
acetylcholine on cholinergic receptor sites. This leads to 
excessive stimulation of cholinergic receptors throughout 
the central and peripheral nervous systems.

To determine the effectiveness of butyrylcholinester-
ase as a prophylaxis of poisoning with organophosphorus 
compounds, a specific biomodel was used, which takes 
into account the difference in the esterase status of mice 
and humans. In human blood, there is twice as much 
BChE than in mouse blood (5 and 2.6 mg/L, respectively), 
whereas the content of AChE is 25 times smaller (0.008 
and 0.2 mg/L, respectively). Unlike many animals, there 
is no carboxyl esterase in human plasma, which can lead 
to a false interpretation of the data when assessing the 
toxicity of OPC. In human plasma, there are two main es-
terases, butyrylcholinesterase (BChE, 5 mg/L) and PON1 
(50 mg/L). In addition, in plasma there is a small amount 
of acetylcholinesterase (AChE), which practically has no 
contribution to the esterase activity of the blood. In or-
der to minimize the background activity of endogenous 
carboxyl esterase in mice, a cresylbenzodioxaphosphorin 
oxide inhibitor (CBDP) was used at a dose of 1.5 mg/kg, 
which completely suppressed the action of this enzyme. 
This inhibitor was administered subcutaneously.

The study was conducted on Balb/c and BChE-ko male 
mice in accordance with the requirements of the current 
Guidelines for the Preclinical Study of New Pharmacolog-
ical Substances and the Rules of Laboratory Practice in 
the Russian Federation (National Standard of the Russian 
Federation, GOST 33647-2015). The procedures with the 
animals were reviewed and approved of by the Bioethical 
Commission of the Institute of Bioorganic Chemistry of 
the Russian Academy of Sciences (RAS). The number of 
animals in the group was at least 8.
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The experiment on mice of the Balb/c line was divided 
into 3 stages:

• At the first stage, groups of mice were injected with 
paraoxon intravenously at doses of 0.5; 0.55; 0.6; 
and 0.7 mg/kg.

• At the second stage, the CBDP blocker was injected 
subcutaneously, and 30 minutes later paraoxon was 
administered intravenously at the doses similar to 
those at the first stage.

• According to the results of the first two stages the 
doses of paraoxon from which the animals had died 
were selected for further research. A CBDP blocker 
was administered subcutaneously, then 15 minutes 
later, the mice were intravenously administered 
with BChE at a dose of 60 mg/kg, after which para-
oxon was administered intravenously.

Further, the study of BChE as a prophylaxis of OPC 
poisoning was carried out on the knockout mice using the 
BChE-ko butyrylcholinesterase gene.

This part of the experiment was divided into 2 stages:

• At the first stage, a CBDP blocker was subcutane-
ously administered to the groups of mice, Paraoxon 
was administered intravenously at doses 0.4; 0.5 
and 0.55 mg/kg 30 minutes later.

• According to the results of the first stage, two dos-
es of paraoxon from which 100% and 50% of the 
animals had died were selected. A CBDP blocker 
was administered subcutaneously, then 15 minutes 
later the mice were intravenously administeredwith 
BChE at a dose of 60 mg/kg, after which paraoxon 
was administered intravenously.

Clinical observations

Tremor is the main clinical sign of anticholinesterase 
poisoning. For all the test systems, the end time of tre-
mor was recorded. To study a locomotor activity, the open 
field test was used on an OptoVarimex-ATM3 unit. The 
observation time was 3 minutes, during which the distan-
ce covered was automatically recorded. Testing was per-
formed 24 hours after poisoning.

Results and discussion

The first priority was to test the theory using a CBDP 
carboxyl esterase inhibitor. Since this esterase also acts 
as a natural OPC biotrap, it can affect the interpretati-
on of the results. Figure 1 shows that a prior subcuta-
neous administration of CBDP significantly reduces the 
chances of survival in the animals treated with paraoxon. 
When using CBDP together with paraoxon at a dose of 
0.5 mg/kg, 35% of the animals die, at a dose of 0.55 mg/
kg, 85% of mice die, and a dose of 0.6 mg/kg is a lethal 
dose. An increase in sensitivity to OPC is associated with 

the action of the blocker.It was decided to continue a fu-
rther study using CBDP.

BChE gene knockouts makes it possible to see how 
the absence of this esterase affects OPC poisoning. The 
sensitivity of the mice is increased by 30% relative to the 
Balb/c mice using an inhibitor. 1These results confirm the 
importance of this esterase.

After confirming the theory associated with the use of 
a carboxyl esterase inhibitor, it was time to use this exper-
imental model to prove the protective activity of BChE 
in acute anticholinesterase poisoning. Work with BChE 
began with a paraoxon dose of 0.55 mg/kg at which 70% 
of the animals had died. As a result of using BChE, the en-
tire group survived (Fig. 2). The next group was a group 
of animals, where, with the introduction of 0.6 mg/kg of 
paraoxon, the entire group died without exception. Using 
BChE made it possible for all the animals from this group 
to survive. It was further decided to continue increasing 
the dose of paraoxon. When using BChE together with 
paraoxon at a dose of 0.65 mg/kg, 40% of the animals 
died, whereas an increase in the dose of paraoxon to 
0.7 mg/kg caused the death of the entire group.

Figure 1. Animal survival in an experimental model of acute an-
ticholinesterase poisoning. Note: Balb/c, BChE-ko – male mice, 
OPC – organophosphorus compound, CBDP – cresylbenzodiox-
aphosphorin oxide.

Figure 2. Survival of animals using BChE in an experimen-
tal model of acute anticholinesterase poisoning. Note: Balb/c, 
BChE-ko – male mice, OPC – organophosphorus compound, 
CBDP – cresylbenzodioxaphosphorin oxide, BChE – butyryl-
cholinesterase.
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As for working with the knockout mice, 0.5 mg/kg was 
chosen to study the activity of BChE as the starting dose 
of paraoxon, in accordance with which the death of 50% 
of the animals from the group was observed. The use of 
BChE at this dose of paraoxon can increase the survival of 
animals up to 100%. In the experimental model, paraoxon 
at a dose of 0.55 mg/kg caused the death of the entire 

group. The use of BChE raised the survival rate to 50%. 
The use of BChE at a paraoxon dose of 0.6 mg/kg did not 
affect survival; with all the animals from this group dying.

In the death of animals, clear dose/effect dependence 
was observed on the administration of paraoxon. The lo-
comotor activity showed similar results. When simulating 
poisoning using a CBDP inhibitor, the difference in dis-
tance in the group of animals treated with paraoxon at a 
dose of 0.5 mg/kg was especially noticeable (Fig. 3). One 
day after poisoning, the animals without carboxyl esterase 
were 60% less mobile than the animals in the group with 
this esterase. The locomotor activity implies the severity 
of poisoning and recovery time. As expected, the knockout 
mice, even 24 hours later, felt worse than the Balb/c mice.

In addition to the fact that preliminary administration of 
BChE at a dose of 60 mg/kg can significantly increase the 
chances of survival, the recovery time after poisoning is 
significantly reduced (Fig. 4). The Balb/c mice with BChE 
doubled the distance traveled. In the same way, the BChE-
ko mice improved their rate by 2 times. It can be argued 
with confidence that the introduction of BChE will lead to 
a further decrease in delayed clinical signs OPC poisoning.

Conclusion

According to the results of the study, it can be argued that 
the intravenous use of BChE at a dose of 60 mg/kg can 
significantly increase the chances of survival of animals 
that have received a minimal lethal dose of OPC. In ad-
dition to the survival, the recovery time after poisoning 
is reduced, which indicates a decrease in the delayed ad-
verse effects of poisoning. From the mechanism of acti-
on of BChE it is clear that the larger the dose, the more 
pronounced the effect. The question naturally arises of 
the maximum tolerated dose. In the future, more research 
is needed to study the issue of BChE activity in chronic 
OPC poisoningand to check the safety of this esterase.
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