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Abstract
Introduction: Tau protein is classically involved in the pathogenesis of a neurodegenerative processes, such as Par-
kinson’s disease. This study was aimed at testing the novel mGluR4 selective agonist using it in transgenic mice with 
tau-associated neurodegeneration.

Materials and methods: Mice with Human P301S Tau hyperexpression were divided into 3 groups: Rapitalam 6 mg/
kg and 20 mg/kg by gavage 3 times a week; and Control (Sham). The motor functions of animals were evaluated at 12th, 
14th, 16th, 18th, and 20th weeks of life using the grip-test, rotarod and hanging wire test. In addition, the time of symptoms 
onset and death was recorded.

Research results: The use of Rapitalam at a dose of 6 mg/kg and 20 mg/kg significantly restored the holding impulse 
on a hanging wire, increasing it from 5.06±1.25 kg×sec to 6.42±0.97 kg×sec and 8.84±1.17 kg×sec, respectively. A 
similar trend was observed in the grip test: Rapitalam recovered grip strength from 28.43±5.04 N in the control group 
to 44.27±5.54 N (6 mg/kg) and 59.53±7.95 (20 mg/kg). Finally, the two-month use of Rapitalam neither delayed the 
manifestation of symptoms, nor increased the survival of mice.

Discussion: The cause of the loss of nerve cells in the mouse-tau line is autophagy. Apparently, Rapitalam is not able 
to simulate this process by reducing excitotoxicity, but against the background of the neurodegenerative process, it 
increases the activity of the nerve cells.

Conclusion: Rapitalam improves motor dysfunction in mice with tauopathy, with no effect on the survival of animals.
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Introduction

The dominant link in the pathogenesis of Parkinson’s 
disease (PD) is an anti-toxic effect of specific protein 

aggregates, which contributes to synaptic dysfunction 
and axonal degeneration of the dopaminergic neurons 
of the black substance. Proteinopathy in PD combines 
this nosology with other conformotional diseases, inclu-
ding synucleopathies (Lewy’s body disease, Multisys-
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tem atrophy, and PD itself), taupathies (frontotemporal 
dementia, corticobasal degeneration, amyotrophic lateral 
sclerosis, parkinsonism, etc.), primary cerebral amyloi-
dosis (Alzheimer’s disease, prion diseases, etc.), and 
polyglutamine diseases (neurodegenerations caused by 
expansion of protein polyglutamine chains: Huntington’s 
chorea, spinocerebellar ataxia, amyotrophic lateral scle-
rosis) (Ganguly et al. 2017).

Toxic aggregates in PD are eosinophilic deposits of ab-
normally folded fibrillar proteins (Lewy’s bodies) (Jellin-
ger 2018; Jellinger and Korczyn 2018). For the first time, 
pathological inclusions in PD were described by Kon-
stantin Tretyakov in 1919 (Trétiakoff 1919). He found in 
the black substance corpuscles previously found in other 
areas of the brain by German-American neurologist Hen-
ry Lewy (Lewy 1912). These inclusions have become a 
pathologically defining feature of PD, but, as with other 
conformational diseases, the mechanism of formation of 
pathological aggregates has not been fully studied and is 
a combination of several processes, including aberrant 
inter-protein interactions (Olzscha et al. 2011), pathology 
of biomembrane (Butterfield and Lashuel 2010), and pro-
tein clearance disorders (Morimoto 2008). Lewy’s bodies 
are formed from insoluble amyloid fibrils of the presy-
naptic α-synuclein protein, consisting of 140 amino acids 
(Lashuel et al. 2013).

Recently, however, evidence has been accumulated that 
in addition to α- synuclein, the Tau protein plays a signifi-
cant role in the development of motor and cognitive disor-
ders in PD and parkinsonism. Tau protein refers to cytos-
keletal proteins and in humans is encoded by the MAPT 
gene located on chromosome 17q21 and containing 16 
exons (Shaw-Smith et al. 2006; Furman et al. 2017; Guo 
et al. 2017). Tau plays a role in stabilizing microtubules, 
binding to the membrane, and regulating axonal transport 
(Gauthierkemper et al. 2011; Wang et al. 2017). Tau dis-
solves well in physiological conditions, but with changes 
in the isoforms or patterns of phosphorylation in patho-
logical conditions, Tau proteins become insoluble and 
abnormally fold, causing damage to neurons and disrup-
tion of axonal transport (Alonso et al. 2001; Laurent et al. 
2018). Abnormal coagulation, accumulation, and patholo-
gical aggregation of Tau are called “tauopathy” (Decker 
et al. 2016; Wang and Mandelkow 2016). Taupathy is the 
main cause of such a socially significant neurodegenera-
tive process as Alzheimer’s disease, but more and more 
information is being accumulated about the detection of 
pathological inclusions of the Tau protein in the black sub-
stance and other brain structures in PD (Arai et al. 2001; 
Armstrong and Cairns 2013; Jones et al. 2014; Holtzman 
et al. 2016). In addition, studies of genetic associations in 
Europeans with sporadic PD within GWAS confirmed that 
MAPT gene polymorphism is closely related to PD (Nalls 
et al. 2014; Kumaran and Cookson 2015).

There are six different Tau protein isoforms, and the 
differences between them are due to alternative splicing 
of the MAPT mRNA gene (Goedert et al. 1989). The 
domains responsible for binding to microtubules consist 
of several repeating sequences. The six isoforms are di-

vided into two categories depending on the number of 
these repeats, namely 3R and 4R. The 3R Tau Isoform 
has three repeats, and 4R has four (Hogg et al. 2003). 
Each of the repeats is able to bind to microtubules, and 
the more repeats the protein contains, the more affinity 
it will have with them (Kumaran et al. 2007). Therefore, 
compared to 3R Tau, it is much easier for 4R Tau to bind 
and polymerize microtubules. Progressive supranuclear 
paralysis and cortical basal degeneration associated with 
PD are characterized by 4R Tau deposits in neurons and 
microglia (Flament et al. 1991). Also, patients suffering 
from X-linked parkinsonism syndrome were found to 
have severe 4R-tauopathy in the striated body (Poorkaj 
et al. 2010)

As mentioned, one of the main reasons for the ac-
cumulation and formation of Tau aggregates is the hy-
perphosphorylation of the molecule (Pascual et al. 2017; 
Barthélemy et al. 2020). Phosphorylation of the Tau pro-
tein affects its ability to bind to and stabilize microtubules 
(Chohan et al. 2005; Prokopovich et al. 2017). When Tau 
is hyperphosphorylated, the architectonics of microtubu-
les is disrupted, which ultimately leads to disruption of 
their transport capacity. Disruption of transport function 
is especially significant for neuronal cells due to their high 
polarity and the importance of communication between 
different cell compartments. The body of a neuronal cell 
contains the nucleus, endoplasmic reticulum, Golgi appa-
ratus, and lysosomes, which are the main sites of protein 
metabolism, whereas synapses specialize in releasing and 
re-capturing neurotransmitters. An extensive network of 
microtubules, which makes up the cell network of the cy-
toskeleton, connects two regions of the neuron, allowing 
for multidirectional movement of transport vesicles from 
the body to the axonal processes.

The Tau protein appears to be easily phosphorylated 
due to 85 potential phosphorylation sites, and 20 protin-
kinases have been characterized that may be associated 
with its phosphorylation (Duka et al. 2013). In the case 
of a healthy human brain, Tau protein contains only two 
or three phosphorylated amino acid residues, whereas in 
the neurodegenerative process, there are much more of 
them (Hanger et al. 2009). Additional studies show that 
the most likely mechanism underlying hyperphosphory-
lation is either an increase in protein kinase activity or 
a decrease in proteinphosphatase activity (Noble еt al. 
2011). In addition, the recent data show that abnormally 
folded Tau can move from cell to cell, via a prion-like 
mechanism, which also contributes to the formation of 
aggregates (Clavaguera et al. 2017).

This study is aimed at evaluating the effect of the new 
antiparkinsonian drug Rapitalam on the motor functions 
of mice with the 1137 C-->T mutation in the gene enco-
ding the Tau protein. This mutation leads to the P301S 
amino acid substitution, and in humans is associated 
with the development of such an autosomal dominant 
neurodegenerative disease as frontotemporal dementia 
with parkinsonism-17 (LVDP-17) (Sperfeld et al. 1999). 
LVDP-17 is characterized by an impaired emotional and 
cognitive status, as well as extrapyramidal disorders in 
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the form of tremor, muscle rigidity, and bradykinesia 
(Hulette et al. 1999; Ghetti et al. 2015).

Transgenic mice with the Human P301S Tau mutation 
were first obtained under the guidance of Michel Goedert 
in 2002 (Allen et al. 2002; Hernandez et al. 2019). Four 
copies of the mutant gene were subcloned under thy1 
promoter, resulting in a four-fold neuro-specific hyper-
expression of the aberrant human Tau protein. At the age 
of 5–6 months, homozygous animals of this line develop 
a neurological phenotype, which is characterized by ge-
neral muscle weakness, tremor, and severe paraparesis. 
Raised by the tail, mice cannot extend their hind limbs, 
and most animals also have eye inflammation.

In heterozygous mice, a similar phenotype develops at 
the age of 12–14 months. Immunohistochemical staining 
with antibodies to the phosphorylated Tau protein reveals 
a large number of immunopositive neurons in all areas of 
the brain, including the hypocampus, frontal and tempo-
ral cortex. The largest amount of mutant protein is found 
in the spinal cord and brain stem. The electron microsco-
py reveals a large number of pathological filaments in 
neurons, whose filaments have an approximate diameter 
of 5–15 nm, are randomly oriented and are not connected 
to the plasma membrane. Morphological studies in mice 
of this line show a decrease in the size and number of 
neurons, reactive astrocytosis, and de-innervation atrop-
hy of muscle fibers (Allen et al. 2002).

Materials and methods
Evaluation of the effectiveness of Rapitalam on the 
Tau-associated neurodegeneration model

Animals

To study the effectiveness of Rapitalam as a tool for the 
prevention and treatment of motor Parkinson-like disor-
ders in hereditary proteinopathy, 45 male mice with hyper-
expression of the aberrant human Tau gene were used. Ho-
mozygous mice with the human P301S Tau mutation were 
used in the experiment at the age of 8 weeks. The animals 

were divided into 3 equal groups: 1) Rapitalam 10 mg/kg 
by gavage 3 times a week for 2 months; 2) Rapitalam 20 
mg/kg by gavage 3 times a week for 3 months; 3) solubi-
lizer (propylene glycol ) in an equivalent volume 3 times 
a week for 3 months. As a control without pathology, 15 
wild-type male C57BL/6J background mice were used. 
The experiment was conducted in compliance with the 
requirements of the Russian Federation Law 267 “On Pro-
tection of Animals from Cruel Treatment” of 24.06.1998, 
the rules of laboratory practice in preclinical studies in 
Russia (GOST 3 51000.3–96 and GOST Р53434–2009) 
and The European Community Directive (86/609 EC).

Motor functions tests

All the tests aimed at evaluating the motor functions were 
performed at the same time of the day. The mice were 
kept under reverse light conditions in order to conduct a 
test during the maximum daily activity of both the ani-
mals and the researchers. The conditions of the working 
chambers, including temperature, illumination, and hu-
midity, were standardized. Before the beginning of the 
tests, the animals underwent the procedure of handling 
and training to the working chambers. After working with 
each animal, all the surfaces were deodorized to reduce 
distractions. To identify the cumulative effect or the de-
velopment of tolerance to the drug, the procedures aimed 
at evaluating motor functions were performed at the 12th, 
14th, 16th, 18th, and 20th weeks of life.

Hanging wire test

The animals were carefully lifted by the tail and pulled to 
the middle of a metal wire 55 cm long and 2 mm thick, 
located at a height of 35 cm from the bedding below. After 
the animal grasped the middle of the wire with its fore-
limbs, the tail was released, the timer was started, and the 
holding impulse was evaluated (body weight in kg x laten-
cy of time to fall in seconds). Each animal was tested three 
times, with an interval of ≥ 60 seconds between the at-
tempts. Then the arithmetic mean was calculated for each 
parameter (Aartsma-Rus and van Putten 2014) (Fig. 1).

Figure 1. General view of the animal during the “hanging wire” test. Note: the picture shows that the mouse is trying to pull up its 
hind legs and fix itself on the wire with four limbs or climb on it.
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Evaluation of the grip strength

Each animal was lifted by the tail and placed with its four 
limbs on a rolling grid connected to a stationary electro-
nic dynamometer, so that the mouse was placed with the 
rostral part of the body to the dynamometer, and the cau-
dal part to the researcher. Then the animal was pulled by 
the tail towards the researcher until the animal’s limbs 
“slip” off the bar of the rolling grid. The maximum tensile 
force (N) of the dynamometer was used as an integral pa-
rameter. Each animal was subjected to the described pro-
cedure three times, then calculating the arithmetic mean 
of the grip strength for three attempts (Aartsma-Rus and 
van Putten 2014) (Fig. 2).

Rotating rod test

To assess the level of movement coordination, the time of 
animals holding onto a rotating rod was estimated (Panlab, 
Spain). For that, mice were lifted by the tail and placed 
onto the rod (band width 50 mm, rod diameter 30 mm), set 
to rotate at a speed of 1 revolution per 8 seconds. Along 
with that, the latency time we recorded from the begin-
ning of the movement to the fall of the animal (Ayton et 
al. 2013), and the arithmetic average of the holding time 

on the rod from the three best attempts out of 6 was evalu-
ated (Bruch et al. 2017). Previously, the animals had been 
trained to walk on a drum, leaving them on the working 
surface of the rod, rotating at a speed of 1 revolution per 
15 seconds, five times for 1 minute a day for 5 days.

Time of the disease manifestation and death

For bioethical reasons, when developing severe paresis, 
the animals were euthanized by an overdose of anesthesia. 
To assess the effect of Rapitalam on the rate of disease ma-
nifestation, the dates of euthanasia or natural death of each 
animal were recorded, and after comparison with the dates 
of birth, a Kaplan-Meyer curve was constructed. To re-
duce the amount of censored data, wild animals were not 
included in the analysis. Statistical differences between 
the groups were determined in pairs using the Cox F-test.

Research result
Hanging wire test

When performing the hanging-wire test, mice with the 
Human p301s Tau mutation are prone to a distinct de-

Figure 2. General view of the animal in the working chamber when determining the grip strength.
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terioration in the motor functions. It was found that af-
ter the 16th week of life, transgenic animals by the 20th 
week of life showed more than a twofold decrease in the 
holding impulse (Table 1, Fig. 1). At the same time, the 
use of Rapitalam at a dose of 6 mg/kg statistically sig-
nificantly restored this indicator from 5.06±1.25 kg×sec 
to 6.42±0.97 kg×sec. The use of Rapitalam at a dose of 
20 mg/kg increased this indicator to 8.84±1.17 kg×sec, 
which was statistically significantly higher than not only 
the same indicator of the control group, but also that of 
the group with the use of Rapitalam at a dose of 6 mg/
kg (Table 1, Fig. 3), which indicates the dose-dependent 
nature of the pharmacological effect.

Thus, the hanging-wire test showed that Rapitalam 
at doses of 6 mg/kg and 20 mg/kg dose-dependently 
improves motor functions, partially restoring muscle 
endurance and the ability of mice to perform complex 
non-stereotypical movements.

Determination of the grip strength

When determining the grip strength using a rolling grid 
connected to a dynamometer, there was a similar trend 

as in the previous test towards a distinct decrease in 
neuromuscular control of the fingers of the forelimbs and 
hind limbs from the 12th to the 20th week, which was ma-
nifested by a more than three-fold decrease in the grip 
strength by 20th week in the control group of animals. 
Against the background of the use of Rapitalam at a dose 
of 6 mg/kg, this process was slowed down, which led to 
the restoration of the grip strength to 44.27±5.54 N com-
pared to 28.43±5.04 N in the control. Similarly to the pre-
vious block, an increase in a Rapitalam dose to 20 mg/kg 
resulted in a statistically significant increase in the effect 
(Table 2, Fig. 4).

Rotating-rod test

The rotating-rod test had less representative results than 
the previous study blocks in mice with the Human p301s 
Tau mutation. So, the test confirmed a progressive loss of 
coordination and ability to balance in transgenic animals, 
but the use of Rapitalam led to a statistically significant 
increase in the holding time on the rotating rod only at the 
20th week and only in the group with a higher dose of the 
drug. However, despite the lack of statistically reliable re-

Table 1. The Effect of Rapitalam on the Holding Impulse that Сharacterizes the Motor Functions of Animals When Tested at the 
12th, 14th, 16th, 18th and 20th weeks of life (M±m).

Group Ratio of the holding impulse (grams×sec/100)
12 weeks 14 weeks 16 weeks 18 weeks 20 weeks

Wild type 13.96±0.31 17.49±0.36 17.06±0.41* 16.92±0.45* 17.14±0.71*
Control 12.72±0.18 17.07±0.50 13.81±0.37 9.22±1.30 5.06±1.25
Rapitalam 6 mg/kg 12.87±0.45 16.77±0.53 14.58±0.63* 11.43±1.05* 6.42±0.97*
Rapitalam 20 mg/kg 12.51±0.35 16.94±0.41 15.77±0.42*# 12.73±1.27*# 8.84±1.17*#

Note: * – p<0.05 when compared with the control group; # – p<0.05 when compared with the Rapitalam 6 mg/kg” group.

Figure 3. Effect of Rapitalam on the dynamics of the holding 
impulse coefficient in mice from the 12th to the 20th week of life.

Figure 4. Influence of Rapitalam on the dynamics of grip 
strength from the 12th to the 20th week of life.

Table 2. The Effect of Rapitalam on the Holding Impulse Coefficient that Characterizes the Motor Functions of Animals WhenTest-
ed at the 12th, 14th, 16th, 18th and 20th weeks of life (M±m).

Group Grip strength (Н)
12 weeks 14 weeks 16 weeks 18 weeks 20 weeks±

Wild type 106,73±4.57 119.33±5.44 111.27±5.17* 114.47±4.13* 119.33±5.85*
Control 103.60±5.68 113.53±4.48 84.73±3.41 73.00±4.66 28.43±5.04
Rapitalam 6 mg/kg 105.07±4.16 114.73±5.45 90.07±5.79 74.27±5.91 44.27±5.54*
Rapitalam 20 mg/kg 106.87±5.08 115.40±4.65 99.47±5.88*# 91.60±4.73*# 59.53±7.95*#

Note: * – p<0.05 when compared with the control group; # – p<0.05 when compared with the Rapitalam 6 mg/kg group.
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Table 3. Effect of Rapitalam on the Holding Time on a Rotating Rod When Tested at the 12th, 14th, 16th, 18th, and 20th weeks of life (M±m).

Group Holding time on the rotating rod (seconds)
12 weeks 14 weeks 16 weeks 18 weeks 20 weeks ±

Wild Type 140.60±24.06* 149.27±28.46* 145.07±27.69* 144.67±17.66* 139.67±20.17*
Control 136.07±24.90 124.47±13.58 125.07±14.60 86.60±12.08 68.36±10.93
Rapitalam 6 mg/kg 127.87±26.72 121.80±11.64 119.27±12.38 102.00±20.58 80.33±16.06
Rapitalam 20 mg/kg 124.60±23.48 117.00±10.79 116.87±12.47 100.33±16.55 85.27±9.47*

Note: * – p<0.05 when compared with the control group; # – p<0.05 when compared with the Rapitalam 6 mg/kg group.

Figure 5. Influence of Rapitalam on the dynamics of the ability 
to stay on a rotating rod from the 12th to the 20th week of life.

Figure 6. Effect of the course use of Rapitalam at doses of 6 
and 20 mg/kg 3 times a week for 3 months on the time of dis-
ease manifestation and death of animals. Note: A) average time 
of death or disease manifestation; B) the Kaplan-Meyer Curve, 
which characterizes the survival function.

A

B

sults, when studying the data obtained in the groups using 
the drug, there was an obvious tendency to normalize the 
indicator at weeks 18 and 20 (Table 3, Fig. 5).

Thus, Rapitalam at doses of 6 and 20 mg/kg demon-
strated low efficiency when conducting the rotating rod 
test, or rather the test itself has a low sensitivity to chan-
ges in motor skills associated with the effects of the drug.

Time of the disease manifestation and death

The obtained results demonstrate that the course use of 
Rapitalam at doses of 6 and 20 mg/kg 3 times a week for 
3 months does not have a statistically significant effect 
on animal mortality (Fig. 6) when comparing groups by 
the Cox F-criterion. So, in the control group, the average 
age of death was 184.73 ±23.72 days, in the groups using 
Rapitalam at doses of 6 and 20 mg/kg –192.20±16.16 and 
193.13±27.31 days, respectively (Fig. 6).

Discussion

Rapitalam is a selective mGluR4 receptor agonist. 
mGluR4 is involved in the presynaptic regulation of 
the synthesis and release of glutamate in the pale globe 
and the black substance. It is known that the basis of the 
Parkinson’s tremor is an increased stimulating effects of 
the pale globe and the black substance on the thalamus. 
Activation of mGluR4 receptors in these structures leads 
to the elimination of imbalance between the inhibitory 
and excitatory pathways by enhancing GABA-ergic in-
hibition. Our previous studies showed that Rapitalam has 
a pronounced antiparkinsonian activity on the model of 
oxotremorin-induced tremor in rats (Avdeeva 2019).

In addition, Rapitalam demonstrated a significant 
neuroprotective activity in a model of the global brain 
ischemia in rats (Avdeeva et al. 2019).

This present study shows that Rapitalam at doses of 6 
and 20 mg/kg 3 times a week for 3 months contributes to 
a marked improvement in motor functions in the mouse 
model of Tau-associated degeneration, but does not lead 
to a statistically significant increase in the life expectancy 
of animals. These results can be explained by the fact that 
by increasing the compensatory capacity of neurons in 
the basal ganglia and motor cortex by targeting mGluR4 
receptors, Rapitalam does not affect the main link of the 
pathological process – neuronal degeneration due to mi-
tochondrial dysfunction and axonal transport disorders. 
It is known that in the Human P301S Tau mouse line, 
neuronal death occurs without the participation of apop-
tosis: with an almost two-fold decrease in the number of 
motor neurons in this line, there is neither apoptosis-spe-
cific DNA fragmentation in neurons, nor the activation 
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of caspase-3 (Allen et al. 2002). The most likely cause 
of the loss of nerve cells in this mutation is autophagy of 
neurons. Apparently, Rapitalam cannot simulate this pro-
cess by reducing calcium excitotoxicity or due to its other 
effects, but against the background of the neurodegenera-
tive process, Rapitalam increases the functional activity 
of the surviving nerve cells.

Conclusion

This study confirmed that a selective mGluR4 receptor 
agonist improves motor dysfunction in mice with taupa-

thy. Despite the fact that Rapitalam had no statistically 
significant effect on animal survival, the results obtained 
indicate that this drug can affect the pathogenetic casca-
des of neuronal damage in the toxic effect of pathological 
aggregates of abnormally folded proteins. This activity 
allows recommending this drug for further studies of an-
tiparkinsonian and neuroprotective effects.
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